{"title":"Symbiotic fitness assessment for the \"Resource-Project-Demand\" chain of integrated energy system in industrial park","authors":"Zhenyu Zhao, Kun Yang","doi":"10.1016/j.segan.2025.101702","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of Integrated Energy Systems (IES) offers a promising solution for low-carbon transformation and enhancing energy efficiency in industrial park energy systems. Grounded in symbiosis theory, this study evaluates the symbiotic fitness status of three functional components (\"resource-project-demand\" chain) within IES in industrial parks (IES-IP). We establish a symbiotic fitness evaluation framework centered on key symbiotic parameters and develop a corresponding model to analyze five case studies. Comparative analysis of cumulative absolute relative deviations reveals that the weighting method incorporating moment estimation theory demonstrates superior performance among combined weighting approaches. The most influential criteria are found to be renewable energy resource potential (resource side), effective clean energy utilization rate (project side), and industrial-commercial electricity price peak-valley differentials (demand side). All five cases exhibit symbiotic fitness degrees surpassing the baseline threshold (point symbiosis, extremely unfit), though remaining below the optimal level (integrated symbiosis, perfectly fit). The obstacle degree model combined with symbiotic fitness coefficient analysis provides actionable insights for system optimization.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101702"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000840","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of Integrated Energy Systems (IES) offers a promising solution for low-carbon transformation and enhancing energy efficiency in industrial park energy systems. Grounded in symbiosis theory, this study evaluates the symbiotic fitness status of three functional components ("resource-project-demand" chain) within IES in industrial parks (IES-IP). We establish a symbiotic fitness evaluation framework centered on key symbiotic parameters and develop a corresponding model to analyze five case studies. Comparative analysis of cumulative absolute relative deviations reveals that the weighting method incorporating moment estimation theory demonstrates superior performance among combined weighting approaches. The most influential criteria are found to be renewable energy resource potential (resource side), effective clean energy utilization rate (project side), and industrial-commercial electricity price peak-valley differentials (demand side). All five cases exhibit symbiotic fitness degrees surpassing the baseline threshold (point symbiosis, extremely unfit), though remaining below the optimal level (integrated symbiosis, perfectly fit). The obstacle degree model combined with symbiotic fitness coefficient analysis provides actionable insights for system optimization.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.