Lambert meets van der Pauw: Analytical expressions for fast numerical computation of dual configuration sheet resistance

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Benny Guralnik , Ole Hansen , Frederik Westergaard Østerberg , Kristoffer Gram Kalhauge , Mikkel Fougt Hansen , Alberto Cagliani
{"title":"Lambert meets van der Pauw: Analytical expressions for fast numerical computation of dual configuration sheet resistance","authors":"Benny Guralnik ,&nbsp;Ole Hansen ,&nbsp;Frederik Westergaard Østerberg ,&nbsp;Kristoffer Gram Kalhauge ,&nbsp;Mikkel Fougt Hansen ,&nbsp;Alberto Cagliani","doi":"10.1016/j.tsf.2025.140663","DOIUrl":null,"url":null,"abstract":"<div><div>The van der Pauw theorem [<em>van der Pauw,</em> L.<em>J. 1958; Philips Res. Rep 13 no 1, 1–9</em>] enables accurate determination of sheet resistance irrespective of either sample or probing geometry. While van der Pauw's identities form the theoretical cornerstone of electrical four-point probe metrology, the formulae are implicit with respect to sheet resistance, enabling to date only numerical solutions or approximations. Here we briefly review former approaches of solving the van der Pauw identities, recognize the problem as root finding of a trinomial, introduce four alternative calculation schemes, and evaluate both the legacy and the proposed approaches in terms of both their accuracy and time complexity. We demonstrate that an iterative solution based on Lambert's transcendental equation yields a thousand-fold acceleration with respect to a numerical solution of van der Pauw's original formula, with no loss of numerical accuracy. We demonstrate that this acceleration remains significant within the scope of current-in-plane tunnelling measurements of magnetic tunnel junctions, where ∼10<sup>3</sup> individual solutions of the van der Pauw identity are typically required during the acquisition of a single measurement point.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"819 ","pages":"Article 140663"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000641","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The van der Pauw theorem [van der Pauw, L.J. 1958; Philips Res. Rep 13 no 1, 1–9] enables accurate determination of sheet resistance irrespective of either sample or probing geometry. While van der Pauw's identities form the theoretical cornerstone of electrical four-point probe metrology, the formulae are implicit with respect to sheet resistance, enabling to date only numerical solutions or approximations. Here we briefly review former approaches of solving the van der Pauw identities, recognize the problem as root finding of a trinomial, introduce four alternative calculation schemes, and evaluate both the legacy and the proposed approaches in terms of both their accuracy and time complexity. We demonstrate that an iterative solution based on Lambert's transcendental equation yields a thousand-fold acceleration with respect to a numerical solution of van der Pauw's original formula, with no loss of numerical accuracy. We demonstrate that this acceleration remains significant within the scope of current-in-plane tunnelling measurements of magnetic tunnel junctions, where ∼103 individual solutions of the van der Pauw identity are typically required during the acquisition of a single measurement point.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信