Lambert meets van der Pauw: Analytical expressions for fast numerical computation of dual configuration sheet resistance

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Benny Guralnik , Ole Hansen , Frederik Westergaard Østerberg , Kristoffer Gram Kalhauge , Mikkel Fougt Hansen , Alberto Cagliani
{"title":"Lambert meets van der Pauw: Analytical expressions for fast numerical computation of dual configuration sheet resistance","authors":"Benny Guralnik ,&nbsp;Ole Hansen ,&nbsp;Frederik Westergaard Østerberg ,&nbsp;Kristoffer Gram Kalhauge ,&nbsp;Mikkel Fougt Hansen ,&nbsp;Alberto Cagliani","doi":"10.1016/j.tsf.2025.140663","DOIUrl":null,"url":null,"abstract":"<div><div>The van der Pauw theorem [<em>van der Pauw,</em> L.<em>J. 1958; Philips Res. Rep 13 no 1, 1–9</em>] enables accurate determination of sheet resistance irrespective of either sample or probing geometry. While van der Pauw's identities form the theoretical cornerstone of electrical four-point probe metrology, the formulae are implicit with respect to sheet resistance, enabling to date only numerical solutions or approximations. Here we briefly review former approaches of solving the van der Pauw identities, recognize the problem as root finding of a trinomial, introduce four alternative calculation schemes, and evaluate both the legacy and the proposed approaches in terms of both their accuracy and time complexity. We demonstrate that an iterative solution based on Lambert's transcendental equation yields a thousand-fold acceleration with respect to a numerical solution of van der Pauw's original formula, with no loss of numerical accuracy. We demonstrate that this acceleration remains significant within the scope of current-in-plane tunnelling measurements of magnetic tunnel junctions, where ∼10<sup>3</sup> individual solutions of the van der Pauw identity are typically required during the acquisition of a single measurement point.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"819 ","pages":"Article 140663"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000641","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The van der Pauw theorem [van der Pauw, L.J. 1958; Philips Res. Rep 13 no 1, 1–9] enables accurate determination of sheet resistance irrespective of either sample or probing geometry. While van der Pauw's identities form the theoretical cornerstone of electrical four-point probe metrology, the formulae are implicit with respect to sheet resistance, enabling to date only numerical solutions or approximations. Here we briefly review former approaches of solving the van der Pauw identities, recognize the problem as root finding of a trinomial, introduce four alternative calculation schemes, and evaluate both the legacy and the proposed approaches in terms of both their accuracy and time complexity. We demonstrate that an iterative solution based on Lambert's transcendental equation yields a thousand-fold acceleration with respect to a numerical solution of van der Pauw's original formula, with no loss of numerical accuracy. We demonstrate that this acceleration remains significant within the scope of current-in-plane tunnelling measurements of magnetic tunnel junctions, where ∼103 individual solutions of the van der Pauw identity are typically required during the acquisition of a single measurement point.
Lambert满足van der Pauw:双构型薄板阻力快速数值计算的解析表达式
van der Pauw定理[j];Philips Res. Rep 13 no . 1,1 - 9]无论样品或探针几何形状如何,都能准确测定薄片电阻。虽然范德保的恒等式构成了电四点探头计量的理论基石,但公式对于薄片电阻是隐含的,因此只能得到数值解或近似值。在这里,我们简要回顾了以前解决范德堡恒等式的方法,认识到这个问题是一个三项式的寻根问题,介绍了四种替代的计算方案,并从精度和时间复杂度方面评估了传统方法和新方法。我们证明了基于Lambert超越方程的迭代解相对于van der Pauw原始公式的数值解产生一千倍的加速度,而不损失数值精度。我们证明,在磁性隧道结的平面内电流隧道测量范围内,这种加速度仍然是显著的,其中在获取单个测量点期间通常需要约103个范德堡恒等式的单独解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信