Zhiwei Zhao , Zhaoming Yang , Huai Su , Michael H. Faber , Jinjun Zhang
{"title":"A methodology of natural gas pipeline network system supply resilience optimization: Based on demand-side and data science-driven approach","authors":"Zhiwei Zhao , Zhaoming Yang , Huai Su , Michael H. Faber , Jinjun Zhang","doi":"10.1016/j.ress.2025.111071","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a method for optimizing the supply resilience of natural gas pipeline networks, driven by demand-side dynamics and data science. The method is divided into two main components: user demand characteristic modeling and system supply resilience optimization modeling. In the user demand characteristic modeling phase, preprocessed user demand data is used, combining the Tabular Variational Autoencoder (TVAE) with probability density distribution curve fitting to provide an in-depth characterization of user demand patterns. For the system supply resilience optimization modeling, constraints are established based on the functional characteristics of the system's components, and specific objective functions are designed for different operational scenarios. Additionally, the Latin Hypercube Sampling (LHS) method is employed to capture fluctuations in user demand. Finally, this paper introduces a set of evaluation indicators for gas supply resilience and validates the proposed methodology through five scenario-based case studies. The results confirm the effectiveness and feasibility of this approach in improving the resilience of natural gas pipeline systems.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"261 ","pages":"Article 111071"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002728","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a method for optimizing the supply resilience of natural gas pipeline networks, driven by demand-side dynamics and data science. The method is divided into two main components: user demand characteristic modeling and system supply resilience optimization modeling. In the user demand characteristic modeling phase, preprocessed user demand data is used, combining the Tabular Variational Autoencoder (TVAE) with probability density distribution curve fitting to provide an in-depth characterization of user demand patterns. For the system supply resilience optimization modeling, constraints are established based on the functional characteristics of the system's components, and specific objective functions are designed for different operational scenarios. Additionally, the Latin Hypercube Sampling (LHS) method is employed to capture fluctuations in user demand. Finally, this paper introduces a set of evaluation indicators for gas supply resilience and validates the proposed methodology through five scenario-based case studies. The results confirm the effectiveness and feasibility of this approach in improving the resilience of natural gas pipeline systems.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.