Enhancing aircraft reliability with information redundancy: A sensor-modal fusion approach leveraging deep learning

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Jie Zhong, Heng Zhang, Qiang Miao
{"title":"Enhancing aircraft reliability with information redundancy: A sensor-modal fusion approach leveraging deep learning","authors":"Jie Zhong,&nbsp;Heng Zhang,&nbsp;Qiang Miao","doi":"10.1016/j.ress.2025.111068","DOIUrl":null,"url":null,"abstract":"<div><div>Redundancy design is a critical way to enhance the reliability and safety of aircraft. However, hardware redundancy significantly increases manufacturing costs and system complexity, while analytical redundancy faces challenges in establishing accurate mathematical models. To address these issues, this paper proposes an information redundancy method for flight data based on sensor-modal fusion. This method leverages deep learning networks to learn the complex coupling relationships between flight parameters from a vast amount of historical flight data. In this respect, a mapping model for flight parameters is established to replace traditional mathematical models used for analytical redundancy. First, the traditional sliding window process is improved by proposing a Fibonacci sampling to balance computational resources and historical view length. Next, a sensor-modal fusion-based prediction model is designed to avoid spatial interactions among sensor features during feature extraction. Furthermore, a sensor attention module and a modal attention module is employed to improve the interpretability of the model. Finally, a Lebesgue evaluation metric is introduced to address ineffective assessment under state balance conditions. The proposed method was validated using real flight data. The results demonstrate that the Lebesgue mean absolute error remained below 1.4 %, outperforming all comparative methods and affirming the effectiveness and superiority of the proposed method. Furthermore, this paper investigated the potential of information redundancy in enhancing aircraft reliability.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"261 ","pages":"Article 111068"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002698","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Redundancy design is a critical way to enhance the reliability and safety of aircraft. However, hardware redundancy significantly increases manufacturing costs and system complexity, while analytical redundancy faces challenges in establishing accurate mathematical models. To address these issues, this paper proposes an information redundancy method for flight data based on sensor-modal fusion. This method leverages deep learning networks to learn the complex coupling relationships between flight parameters from a vast amount of historical flight data. In this respect, a mapping model for flight parameters is established to replace traditional mathematical models used for analytical redundancy. First, the traditional sliding window process is improved by proposing a Fibonacci sampling to balance computational resources and historical view length. Next, a sensor-modal fusion-based prediction model is designed to avoid spatial interactions among sensor features during feature extraction. Furthermore, a sensor attention module and a modal attention module is employed to improve the interpretability of the model. Finally, a Lebesgue evaluation metric is introduced to address ineffective assessment under state balance conditions. The proposed method was validated using real flight data. The results demonstrate that the Lebesgue mean absolute error remained below 1.4 %, outperforming all comparative methods and affirming the effectiveness and superiority of the proposed method. Furthermore, this paper investigated the potential of information redundancy in enhancing aircraft reliability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信