{"title":"Assessing the vulnerability of power network accounting for demand diversity among urban functional zones","authors":"Mijie Du , Peng Guo , Enrico Zio , Jing Zhao","doi":"10.1016/j.ress.2025.111058","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a method for assessing power network vulnerability considering demand diversity among urban functional zones. By simulating various demand entities across urban functional zones based on Point of Interest (POI) data, a power demand model is developed based on load density indicators. Additionally, a power network model is developed, and cascading failure mechanisms are defined to represent the dynamic behavior of the power network. A comprehensive vulnerability assessment model is then built, considering both structural and functional aspects. Finally, a case study is conducted to assess the power network's vulnerability under various demand settings and failure scenarios. The case study reveals that node failures affect not only neighboring nodes but also non-adjacent ones. Also, structural vulnerability (SV) and functional vulnerability (FV) reflect different aspects of power network performance, and SV is generally higher than FV. As expected, both SV and FV are found to increase with rising demand, and the vulnerability growth trends vary across different demand growth scenarios. Based on the influence of demand growth on system vulnerability, power network nodes are categorized into three types: inherently vulnerable, demand-sensitive and stable. Finally, this study evaluates the effectiveness of energy storage deployment and edge capacity expansion strategies in mitigating power network vulnerability under demand growth scenarios.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 111058"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002595","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a method for assessing power network vulnerability considering demand diversity among urban functional zones. By simulating various demand entities across urban functional zones based on Point of Interest (POI) data, a power demand model is developed based on load density indicators. Additionally, a power network model is developed, and cascading failure mechanisms are defined to represent the dynamic behavior of the power network. A comprehensive vulnerability assessment model is then built, considering both structural and functional aspects. Finally, a case study is conducted to assess the power network's vulnerability under various demand settings and failure scenarios. The case study reveals that node failures affect not only neighboring nodes but also non-adjacent ones. Also, structural vulnerability (SV) and functional vulnerability (FV) reflect different aspects of power network performance, and SV is generally higher than FV. As expected, both SV and FV are found to increase with rising demand, and the vulnerability growth trends vary across different demand growth scenarios. Based on the influence of demand growth on system vulnerability, power network nodes are categorized into three types: inherently vulnerable, demand-sensitive and stable. Finally, this study evaluates the effectiveness of energy storage deployment and edge capacity expansion strategies in mitigating power network vulnerability under demand growth scenarios.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.