Enhancing solar greenhouse efficiency through the integration of phase change materials: Thermal regulation and sustainable crop growth

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Farhan Lafta Rashid , Mudhar A. Al-Obaidi , Mohamad M. Alsebeei , Zainab Abdul Karim Alkhekany , Arman Ameen , Shabbir Ahmad , Atef Chibani , Mohamed Kezzar , Ephraim Bonah Agyekum , Ali Alshammari
{"title":"Enhancing solar greenhouse efficiency through the integration of phase change materials: Thermal regulation and sustainable crop growth","authors":"Farhan Lafta Rashid ,&nbsp;Mudhar A. Al-Obaidi ,&nbsp;Mohamad M. Alsebeei ,&nbsp;Zainab Abdul Karim Alkhekany ,&nbsp;Arman Ameen ,&nbsp;Shabbir Ahmad ,&nbsp;Atef Chibani ,&nbsp;Mohamed Kezzar ,&nbsp;Ephraim Bonah Agyekum ,&nbsp;Ali Alshammari","doi":"10.1016/j.enbuild.2025.115667","DOIUrl":null,"url":null,"abstract":"<div><div>The increased request for sustainable agricultural practices in response to climate change requires inventions in greenhouse design and operation. This review inspects scientific investigations that explore how solar greenhouses utilise phase change materials (PCMs) to improve thermal regulation, decrease expenses, and support crop growth. Also, it examines the matter of temperature instability in traditional greenhouses, as fluctuated temperatures would negatively impact plant health and crop production. Experimental research on PCMs has led to the development of a new thermal energy storage system, which has been analysed for its competence. The outcomes of this review specify that greenhouse temperatures can increase meaningfully during crucial nighttime hours when PCMs are utilised, with a temperature difference ranges between 1 °C to 2 °C greater than those in standard greenhouses. Also, the integration of PCMs can reduce the daily temperature fluctuation by 3 °C to 5 °C, enhancing temperature control. Accordingly, it can be said that the incorporation of PCMs within solar greenhouses can enhance the environmental conditions of crops besides boosting the thermal efficacy, contributing to agricultural sustainability. Finally, this review presents an operational strategy to transform greenhouse functionality by enhancing the energy competence and climate resilience. In turn, these systems could revolutionize greenhouse operations and address global food security challenges.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"337 ","pages":"Article 115667"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003974","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increased request for sustainable agricultural practices in response to climate change requires inventions in greenhouse design and operation. This review inspects scientific investigations that explore how solar greenhouses utilise phase change materials (PCMs) to improve thermal regulation, decrease expenses, and support crop growth. Also, it examines the matter of temperature instability in traditional greenhouses, as fluctuated temperatures would negatively impact plant health and crop production. Experimental research on PCMs has led to the development of a new thermal energy storage system, which has been analysed for its competence. The outcomes of this review specify that greenhouse temperatures can increase meaningfully during crucial nighttime hours when PCMs are utilised, with a temperature difference ranges between 1 °C to 2 °C greater than those in standard greenhouses. Also, the integration of PCMs can reduce the daily temperature fluctuation by 3 °C to 5 °C, enhancing temperature control. Accordingly, it can be said that the incorporation of PCMs within solar greenhouses can enhance the environmental conditions of crops besides boosting the thermal efficacy, contributing to agricultural sustainability. Finally, this review presents an operational strategy to transform greenhouse functionality by enhancing the energy competence and climate resilience. In turn, these systems could revolutionize greenhouse operations and address global food security challenges.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信