Immunomodulatory Properties of Live and Thermally-Inactivated Food-Origin Lactic Acid Bacteria—In Vitro Studies

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Wioletta Mosiej, Ewa Długosz, Marcin Kruk, Dorota Zielińska
{"title":"Immunomodulatory Properties of Live and Thermally-Inactivated Food-Origin Lactic Acid Bacteria—In Vitro Studies","authors":"Wioletta Mosiej, Ewa Długosz, Marcin Kruk, Dorota Zielińska","doi":"10.1002/mnfr.70047","DOIUrl":null,"url":null,"abstract":"The study investigates the strain-specific immunomodulatory properties of live and thermally-inactivated (TI) lactic acid bacteria (LAB) derived from traditional Polish fermented foods, focusing on their potential as probiotics and postbiotics. LAB strains, known for their role in food fermentation, were assessed for their ability to influence cytokine production in THP-1 macrophages, maintain intestinal epithelial barrier integrity in Caco-2 monolayers, exhibit antioxidant activity, and produce specific organic acids and sugars. The research demonstrated that live LAB strains significantly upregulated the anti-inflammatory cytokine IL-10, particularly under inflammatory conditions, while TI strains exhibited notable antioxidant and anti-inflammatory properties. TI strains showed a greater ability to protect epithelial barrier function and reduce pro-inflammatory cytokine secretion than live strains, suggesting a promising role for postbiotics. The findings underscore the potential of LAB from fermented foods, demonstrating that postbiotic derivatives can differently influence inflammation compared to live bacteria, highlighting their potential as immune-enhancing agents, capable of modulating immune responses and offering therapeutic benefits against inflammation-related disorders. However, the limitations of in vitro models highlight the need for further in vivo and clinical studies to validate these effects and fully uncover the health benefits of these LAB strains for humans.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"37 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70047","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates the strain-specific immunomodulatory properties of live and thermally-inactivated (TI) lactic acid bacteria (LAB) derived from traditional Polish fermented foods, focusing on their potential as probiotics and postbiotics. LAB strains, known for their role in food fermentation, were assessed for their ability to influence cytokine production in THP-1 macrophages, maintain intestinal epithelial barrier integrity in Caco-2 monolayers, exhibit antioxidant activity, and produce specific organic acids and sugars. The research demonstrated that live LAB strains significantly upregulated the anti-inflammatory cytokine IL-10, particularly under inflammatory conditions, while TI strains exhibited notable antioxidant and anti-inflammatory properties. TI strains showed a greater ability to protect epithelial barrier function and reduce pro-inflammatory cytokine secretion than live strains, suggesting a promising role for postbiotics. The findings underscore the potential of LAB from fermented foods, demonstrating that postbiotic derivatives can differently influence inflammation compared to live bacteria, highlighting their potential as immune-enhancing agents, capable of modulating immune responses and offering therapeutic benefits against inflammation-related disorders. However, the limitations of in vitro models highlight the need for further in vivo and clinical studies to validate these effects and fully uncover the health benefits of these LAB strains for humans.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信