{"title":"A Generalizable Screening Platform for Developing Functional Aptasensors","authors":"Micaela Belleperche, Jiawen Liu, Yuhao Chen, Chuyang Zhang, Kimiya Karimi, Sabrina Leslie, Maureen McKeague","doi":"10.1021/acs.analchem.4c04120","DOIUrl":null,"url":null,"abstract":"Aptamers are versatile sensing elements for the construction of biosensors. A common approach for signal generation in “aptasensors” involves the displacement of short complementary “probes” resulting from conformational changes upon aptamer-target binding. However, designing strands that rapidly and completely displace when the target binds is nontrivial. Typically, probes are discovered through a lengthy process of screening several potential sequences. Here, we explored properties governing probe displacement efficiency using a well-characterized aptamer for the agricultural contaminant ochratoxin A (OTA). Surprisingly, the length, probe affinity, and melting temperature did not correlate with probe displacement efficiency. We therefore developed a novel surface plasmon resonance (SPR) assay to rapidly measure target-induced displacement of probes from aptamers. Fitted displacement results from the SPR assay were correlated with fast proportional fluorescence recovery from quencher-labeled probe displacement. This new method allows for the rapid distinction of efficient probes, resulting in sensitive biosensing of OTA. Finally, we demonstrated our new method is adaptable to diverse aptamers, offering a generally applicable method to improve probe design and accelerate aptasensor development.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04120","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aptamers are versatile sensing elements for the construction of biosensors. A common approach for signal generation in “aptasensors” involves the displacement of short complementary “probes” resulting from conformational changes upon aptamer-target binding. However, designing strands that rapidly and completely displace when the target binds is nontrivial. Typically, probes are discovered through a lengthy process of screening several potential sequences. Here, we explored properties governing probe displacement efficiency using a well-characterized aptamer for the agricultural contaminant ochratoxin A (OTA). Surprisingly, the length, probe affinity, and melting temperature did not correlate with probe displacement efficiency. We therefore developed a novel surface plasmon resonance (SPR) assay to rapidly measure target-induced displacement of probes from aptamers. Fitted displacement results from the SPR assay were correlated with fast proportional fluorescence recovery from quencher-labeled probe displacement. This new method allows for the rapid distinction of efficient probes, resulting in sensitive biosensing of OTA. Finally, we demonstrated our new method is adaptable to diverse aptamers, offering a generally applicable method to improve probe design and accelerate aptasensor development.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.