Epigenetic and metabolic regulation of developmental timing in neocortex evolution.

IF 14.6 1区 医学 Q1 NEUROSCIENCES
Matilde Aquilino, Nora Ditzer, Takashi Namba, Mareike Albert
{"title":"Epigenetic and metabolic regulation of developmental timing in neocortex evolution.","authors":"Matilde Aquilino, Nora Ditzer, Takashi Namba, Mareike Albert","doi":"10.1016/j.tins.2025.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain is characterized by impressive cognitive abilities. The neocortex is the seat of higher cognition, and neocortex expansion is a hallmark of human evolution. While developmental programs are similar in different species, the timing of developmental transitions and the capacity of neural progenitor cells (NPCs) to proliferate differ, contributing to the increased production of neurons during human cortical development. Here, we review the epigenetic regulation of developmental transitions during corticogenesis, focusing mostly on humans while building on knowledge from studies in mice. We discuss metabolic-epigenetic interplay as a potential mechanism to integrate extracellular signals into neural chromatin. Moreover, we synthesize current understanding of how epigenetic and metabolic deregulation can cause neurodevelopmental disorders. Finally, we outline how developmental timing can be investigated using brain organoid models.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2025.03.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain is characterized by impressive cognitive abilities. The neocortex is the seat of higher cognition, and neocortex expansion is a hallmark of human evolution. While developmental programs are similar in different species, the timing of developmental transitions and the capacity of neural progenitor cells (NPCs) to proliferate differ, contributing to the increased production of neurons during human cortical development. Here, we review the epigenetic regulation of developmental transitions during corticogenesis, focusing mostly on humans while building on knowledge from studies in mice. We discuss metabolic-epigenetic interplay as a potential mechanism to integrate extracellular signals into neural chromatin. Moreover, we synthesize current understanding of how epigenetic and metabolic deregulation can cause neurodevelopmental disorders. Finally, we outline how developmental timing can be investigated using brain organoid models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信