Meng Shi , Kai Liu , Xin Li , Xiao-li Zeng , Xiao-ju Liu
{"title":"Melatonin ameliorates PM2.5-induced airway inflammation and apoptosis by PERK/eIF2α/ATF4/CHOP in chronic obstructive pulmonary disease mice","authors":"Meng Shi , Kai Liu , Xin Li , Xiao-li Zeng , Xiao-ju Liu","doi":"10.1016/j.taap.2025.117314","DOIUrl":null,"url":null,"abstract":"<div><div>Fine particulate matter (PM2.5) has been reported to exacerbate chronic airway inflammation, contributing to progression and acute exacerbation of chronic obstructive pulmonary disease (COPD). Persistent activated endoplasmic reticulum (ER) stress-related PERK/eIF2α/ATF4/CHOP pathway is critical in driving inflammation and cell death in a variety of inflammatory diseases. Melatonin (MEL) is well-recognized for its broad biological activities, such as anti-oxidative and anti-inflammatory effects However, the exact role of ER stress-related pathway and MEL in PM2.5-induced airway inflammation and apoptosis in COPD has not yet been elucidated. Therefore, we constructed the COPD mice model by cigarette smoke (CS) exposure to evaluate the mechanism by which PM2.5 exacerbate the development of COPD and the protective role of MEL. Results indicated that PM2.5 significantly impair lung function, disrupt emphysema, exacerbate inflammation and apoptosis and intensify the PERK/eIF2α/ATF4/CHOP pathway in COPD mice. Moreover, these changes caused by PM2.5 could be mitigated by MEL. In vitro, PM2.5 exposure notably reduced cell viability and triggered inflammation and apoptosis in BEAS-2B cells induced by cigarette smoke extract (CSE). These effects were reversed by the ER stress inhibitor 4-phenylbutyric acid (4-PBA), with MEL demonstrating similar effect. These findings demonstrate that PM2.5 aggravates airway inflammation and apoptosis via activating ER stress-related PERK/eIF2α/ATF4/CHOP pathways in COPD, which could be significantly restored by MEL.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"499 ","pages":"Article 117314"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000900","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Fine particulate matter (PM2.5) has been reported to exacerbate chronic airway inflammation, contributing to progression and acute exacerbation of chronic obstructive pulmonary disease (COPD). Persistent activated endoplasmic reticulum (ER) stress-related PERK/eIF2α/ATF4/CHOP pathway is critical in driving inflammation and cell death in a variety of inflammatory diseases. Melatonin (MEL) is well-recognized for its broad biological activities, such as anti-oxidative and anti-inflammatory effects However, the exact role of ER stress-related pathway and MEL in PM2.5-induced airway inflammation and apoptosis in COPD has not yet been elucidated. Therefore, we constructed the COPD mice model by cigarette smoke (CS) exposure to evaluate the mechanism by which PM2.5 exacerbate the development of COPD and the protective role of MEL. Results indicated that PM2.5 significantly impair lung function, disrupt emphysema, exacerbate inflammation and apoptosis and intensify the PERK/eIF2α/ATF4/CHOP pathway in COPD mice. Moreover, these changes caused by PM2.5 could be mitigated by MEL. In vitro, PM2.5 exposure notably reduced cell viability and triggered inflammation and apoptosis in BEAS-2B cells induced by cigarette smoke extract (CSE). These effects were reversed by the ER stress inhibitor 4-phenylbutyric acid (4-PBA), with MEL demonstrating similar effect. These findings demonstrate that PM2.5 aggravates airway inflammation and apoptosis via activating ER stress-related PERK/eIF2α/ATF4/CHOP pathways in COPD, which could be significantly restored by MEL.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.