A Novel Metal-Bridging Free Lift-Off Process for Fabricating High-Performance Sub-100-nm Gate Length MoS₂ Transistors

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yun-Cheng Chang;Yuan-Chun Su;Hsiang-Chi Hu;Jian-Chen Tsai;Chih-Yao Shih;Chun-Jung Su;Pei-Wen Li;Wen-Hao Chang;Horng-Chih Lin
{"title":"A Novel Metal-Bridging Free Lift-Off Process for Fabricating High-Performance Sub-100-nm Gate Length MoS₂ Transistors","authors":"Yun-Cheng Chang;Yuan-Chun Su;Hsiang-Chi Hu;Jian-Chen Tsai;Chih-Yao Shih;Chun-Jung Su;Pei-Wen Li;Wen-Hao Chang;Horng-Chih Lin","doi":"10.1109/TED.2025.3537064","DOIUrl":null,"url":null,"abstract":"A novel approach for fabricating molybdenum disulfide (MoS2) transistors with sub-100-nm gate length is reported. Unlike the traditional lift-off process, the photoresist (PR) is not in contact with the MoS2 channel, while the metal deposited in the source/drain (S/D) areas is not bridged with that on PR through the PR sidewalls. A sacrificial oxide layer between the channel and the PR enables the two distinct features, which are done after generating the PR pattern that defines the S/D regions, selectively removing the sacrificial oxide to suspend the PR between the source and drain regions. When metal is subsequently deposited, the metal on the PR will naturally disconnect from that in the S/D regions due to the air gap between the PR and the channel. The new metal-bridging-free process frees the fabricated devices from many issues encountered in the traditional lift-off process. Besides, we combined the I-line photolithography and a novel PR trimming technique to demonstrate the feasibility of this approach in fabricating nanometer-scaled devices with high throughput. The fabricated MoS2 transistors with Au contacts exhibit S/D series resistance of 2.4 k<inline-formula> <tex-math>$\\Omega $ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula> m.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 4","pages":"2032-2037"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879119/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach for fabricating molybdenum disulfide (MoS2) transistors with sub-100-nm gate length is reported. Unlike the traditional lift-off process, the photoresist (PR) is not in contact with the MoS2 channel, while the metal deposited in the source/drain (S/D) areas is not bridged with that on PR through the PR sidewalls. A sacrificial oxide layer between the channel and the PR enables the two distinct features, which are done after generating the PR pattern that defines the S/D regions, selectively removing the sacrificial oxide to suspend the PR between the source and drain regions. When metal is subsequently deposited, the metal on the PR will naturally disconnect from that in the S/D regions due to the air gap between the PR and the channel. The new metal-bridging-free process frees the fabricated devices from many issues encountered in the traditional lift-off process. Besides, we combined the I-line photolithography and a novel PR trimming technique to demonstrate the feasibility of this approach in fabricating nanometer-scaled devices with high throughput. The fabricated MoS2 transistors with Au contacts exhibit S/D series resistance of 2.4 k $\Omega $ - $\mu $ m.
用于制造高性能亚 100 纳米栅极长度 MoS₂晶体管的新型无金属桥接提升工艺
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信