{"title":"On the Interaction Between Hot Carrier Degradation (HCD) and Electrical-Induced Breakdown (EiB) in Advanced FinFET Nodes","authors":"Yongkang Xue;Yilin Hu;Maokun Wu;Chengyang Zhang;Da Wang;Jianfu Zhang;Pengpeng Ren;Xing Wu;Runsheng Wang;Zhigang Ji;Ru Huang","doi":"10.1109/TED.2025.3543330","DOIUrl":null,"url":null,"abstract":"The interaction between hot carrier degradation (HCD) and electrical-induced breakdown (EiB) in FinFETs at advanced technology nodes is investigated for the first time. Unlike previous findings in planar FETs, HCD significantly impacts EiB in FinFETs, with opposite effects on n- and p-type. Our analysis reveals that the competitive mechanism between defect-induced leakage increase and defect-induced electric field reduction is the primary cause of these differences. For nFinFETs, HCD-induced defects lead to significant leakage current and substantial Joule heating, both of which accelerate the breakdown of interconnect M0 metal. Conversely, for pFinFETs, the leakage current increase is negligible, while fixed charges generated in the high-k (HK) layer reduce the internal electric field within the dielectric, thereby slowing down EiB. The study also traces the physical origins of defects caused by HCD, identifying hydroxyl-E<inline-formula> <tex-math>$^{\\prime }$ </tex-math></inline-formula> (H-E<inline-formula> <tex-math>$^{\\prime }$ </tex-math></inline-formula>) centers in the IL layer and oxygen vacancy (Vo) in the HK layer as key contributors to the differing leakage behaviors of n- and p-FinFETs. To address the reliability challenges posed by HCD on EiB in nFinFETs, a novel M0 metal design methodology that considers the interaction between HCD and EiB is proposed, offering a pathway to improve interconnect reliability for advanced technology nodes.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 4","pages":"1604-1611"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10904255/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between hot carrier degradation (HCD) and electrical-induced breakdown (EiB) in FinFETs at advanced technology nodes is investigated for the first time. Unlike previous findings in planar FETs, HCD significantly impacts EiB in FinFETs, with opposite effects on n- and p-type. Our analysis reveals that the competitive mechanism between defect-induced leakage increase and defect-induced electric field reduction is the primary cause of these differences. For nFinFETs, HCD-induced defects lead to significant leakage current and substantial Joule heating, both of which accelerate the breakdown of interconnect M0 metal. Conversely, for pFinFETs, the leakage current increase is negligible, while fixed charges generated in the high-k (HK) layer reduce the internal electric field within the dielectric, thereby slowing down EiB. The study also traces the physical origins of defects caused by HCD, identifying hydroxyl-E$^{\prime }$ (H-E$^{\prime }$ ) centers in the IL layer and oxygen vacancy (Vo) in the HK layer as key contributors to the differing leakage behaviors of n- and p-FinFETs. To address the reliability challenges posed by HCD on EiB in nFinFETs, a novel M0 metal design methodology that considers the interaction between HCD and EiB is proposed, offering a pathway to improve interconnect reliability for advanced technology nodes.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.