Is it necessary to calibrate existing decision-making results based on real option analysis during the process of climate change? A case study from Xiamen, China
IF 6.6 2区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Wenqiang Li , Xin Jin , Pei Peng , Zaiyi Liao , Min Wu , Huahua Xu , Jiashun Feng
{"title":"Is it necessary to calibrate existing decision-making results based on real option analysis during the process of climate change? A case study from Xiamen, China","authors":"Wenqiang Li , Xin Jin , Pei Peng , Zaiyi Liao , Min Wu , Huahua Xu , Jiashun Feng","doi":"10.1016/j.enbuild.2025.115658","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies have rarely examined how well Representative Concentration Pathways (RCP) scenarios fit with real weather data making climate change related decision-makings. This paper proposes a real option analysis (ROA) decision-making calibration method based on RCP (learning) scenarios uncertainty caused by the gap between the simulated and real weather conditions. Firstly, EnergyPlus is used to predict the energy consumption of a case building based on future climatic conditions, and the learning scenarios uncertainty is quantified. Secondly, a ROA decision-making calibration model (ROACM) is established through optimization to minimize the learning scenarios uncertainty. Finally, the ROACM is applied to a case study of an office building located in Xiamen, China, aiming to calibrate individual and sequential investment decisions for three retrofitting measures (<span><math><msub><mi>R</mi><mn>1</mn></msub></math></span>: horizontal shading, <span><math><msub><mi>R</mi><mn>2</mn></msub></math></span>: low-e windows, <span><math><msub><mi>R</mi><mn>3</mn></msub></math></span>: improving COP of chiller). The accuracy of ROACM is assessed through a sensitivity analysis. The results indicate that the learning scenarios uncertainty leads to annual energy consumption differences of approximately 8,451 kW <span><math><mo>∙</mo></math></span>h to 17,545 kW<span><math><mo>∙</mo></math></span>h in the case study. After calibration, the optimal timing for both individual and sequential investment has advanced by at least 4 years, significantly boosting returns. The optimal individual investment <span><math><msub><mi>R</mi><mn>3</mn></msub></math></span> generated an additional return of up to $52,744, while the sequential investment <span><math><mrow><msub><mi>R</mi><mn>1</mn></msub><mo>+</mo><msub><mi>R</mi><mn>13</mn></msub></mrow></math></span> (shading first, and improving COP of chiller later), increased by $175,017. The proposed ROACM demonstrated high performance during model validation in a case study, and could also aid governments or investors in ROA-based mitigation strategies analysis and increasing the reliability of the results.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"337 ","pages":"Article 115658"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003883","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have rarely examined how well Representative Concentration Pathways (RCP) scenarios fit with real weather data making climate change related decision-makings. This paper proposes a real option analysis (ROA) decision-making calibration method based on RCP (learning) scenarios uncertainty caused by the gap between the simulated and real weather conditions. Firstly, EnergyPlus is used to predict the energy consumption of a case building based on future climatic conditions, and the learning scenarios uncertainty is quantified. Secondly, a ROA decision-making calibration model (ROACM) is established through optimization to minimize the learning scenarios uncertainty. Finally, the ROACM is applied to a case study of an office building located in Xiamen, China, aiming to calibrate individual and sequential investment decisions for three retrofitting measures (: horizontal shading, : low-e windows, : improving COP of chiller). The accuracy of ROACM is assessed through a sensitivity analysis. The results indicate that the learning scenarios uncertainty leads to annual energy consumption differences of approximately 8,451 kW h to 17,545 kWh in the case study. After calibration, the optimal timing for both individual and sequential investment has advanced by at least 4 years, significantly boosting returns. The optimal individual investment generated an additional return of up to $52,744, while the sequential investment (shading first, and improving COP of chiller later), increased by $175,017. The proposed ROACM demonstrated high performance during model validation in a case study, and could also aid governments or investors in ROA-based mitigation strategies analysis and increasing the reliability of the results.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.