Enhancing building cooling efficiency with water-active PCM panels and displacement ventilation in hot climates

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Osama Sabah Almtuly , Mazlan Abdul Wahid , Hasanen M. Hussen , Mohd Ibthisham Ardani , Keng Yinn Wong , Ihab Hasan Hatif
{"title":"Enhancing building cooling efficiency with water-active PCM panels and displacement ventilation in hot climates","authors":"Osama Sabah Almtuly ,&nbsp;Mazlan Abdul Wahid ,&nbsp;Hasanen M. Hussen ,&nbsp;Mohd Ibthisham Ardani ,&nbsp;Keng Yinn Wong ,&nbsp;Ihab Hasan Hatif","doi":"10.1016/j.enbuild.2025.115688","DOIUrl":null,"url":null,"abstract":"<div><div>Buildings in extremely hot climates have high energy demands and carbon emissions due to intensive cooling requirements, emphasizing the need for innovative, energy-efficient cooling solutions. This study introduces and evaluates the performance of a novel cooling system that integrates phase change material (PCM) into water-active ceiling panels combined with displacement ventilation (DV). The PCM used in this study is sourced from waste petroleum products, making it abundant and cost-effective. Using full-scale experiments and CFD simulations, this research assesses the system’s impact on cooling energy consumption, thermal comfort, and indoor air quality, comparing it to conventional cooling systems. The results show that the novel system reduces indoor air temperature peaks by up to 3.5 °C, enhances thermal comfort, and lowers cooling energy consumption, achieving monthly energy savings of up to 32 %. The PCM ceiling panels also reduce peak power usage and overall energy demands through efficient heat storage and re-solidification cycles, enabling shorter cooling operating times. Furthermore, the combined PCM-DV system delivers stable, uniform indoor temperatures, improving occupant comfort and enhancing indoor air quality. This study demonstrates the potential of PCM-enhanced cooling systems in extremely hot climates and provides actionable insights for energy-efficient building strategies in arid regions.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"337 ","pages":"Article 115688"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825004189","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Buildings in extremely hot climates have high energy demands and carbon emissions due to intensive cooling requirements, emphasizing the need for innovative, energy-efficient cooling solutions. This study introduces and evaluates the performance of a novel cooling system that integrates phase change material (PCM) into water-active ceiling panels combined with displacement ventilation (DV). The PCM used in this study is sourced from waste petroleum products, making it abundant and cost-effective. Using full-scale experiments and CFD simulations, this research assesses the system’s impact on cooling energy consumption, thermal comfort, and indoor air quality, comparing it to conventional cooling systems. The results show that the novel system reduces indoor air temperature peaks by up to 3.5 °C, enhances thermal comfort, and lowers cooling energy consumption, achieving monthly energy savings of up to 32 %. The PCM ceiling panels also reduce peak power usage and overall energy demands through efficient heat storage and re-solidification cycles, enabling shorter cooling operating times. Furthermore, the combined PCM-DV system delivers stable, uniform indoor temperatures, improving occupant comfort and enhancing indoor air quality. This study demonstrates the potential of PCM-enhanced cooling systems in extremely hot climates and provides actionable insights for energy-efficient building strategies in arid regions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信