Crosslinking network design of cellulose-based conductive gels: Mechanism, strategies, and characterization

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haocheng Fu , Bin Wang , Jinpeng Li , Pengfei Li , Chengliang Duan , Feiyu Tang , Hao Jiang , Jun Xu , Jinsong Zeng , Wenhua Gao , Daxian Cao , Kefu Chen
{"title":"Crosslinking network design of cellulose-based conductive gels: Mechanism, strategies, and characterization","authors":"Haocheng Fu ,&nbsp;Bin Wang ,&nbsp;Jinpeng Li ,&nbsp;Pengfei Li ,&nbsp;Chengliang Duan ,&nbsp;Feiyu Tang ,&nbsp;Hao Jiang ,&nbsp;Jun Xu ,&nbsp;Jinsong Zeng ,&nbsp;Wenhua Gao ,&nbsp;Daxian Cao ,&nbsp;Kefu Chen","doi":"10.1016/j.pmatsci.2025.101476","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose-based conductive gels represent a unique platform for integrating intelligent electronic devices seamlessly into daily life due to their excellent flexibility, adjustable three-dimensional (3D) structure, and sustainability. Mechanical strength and conductivity, as two key parameters, play significant roles in this process. Nevertheless, transferring excellent mechanical properties and conductivity to 3D gels simultaneously poses numerous challenges due to their inherent conflict in typical cases. The advancements in functionalizing crosslinking networks at the single cellulosic material level and within the constructed cellulose-based 3D matrix have fundamentally altered their utility. This review provides a systematic and in-depth understanding of designing advanced crosslinking networks in developing cellulose-based conductive gels with superior mechanical strength and conductivity. Here, we introduce the advantages of cellulose in designing conductive gels and the component effect of the gels on mechanical and conductive properties. Then, we systematically summarize the importance and design methods of crosslinking network engineering in balancing these features theoretically. Furthermore, fabrication strategies for achieving superior mechanical strength and enhanced conductivity through structural optimization of cellulose-derived crosslinking networks are investigated, with particular emphasis on interfacial engineering and functional integration mechanisms. We further review the compatibility of crosslinking networks and other key properties (self-healing and low-temperature tolerance). We also discuss advanced analysis methods of structure-performance relationship for developing novel cellulose-based conductive gels with superior physicochemical characteristics. Finally, we introduce potential applications and highlight key technologies to broaden the application prospects of cellulose-based conductive gels for smart wearable devices.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"153 ","pages":"Article 101476"},"PeriodicalIF":33.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525000519","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose-based conductive gels represent a unique platform for integrating intelligent electronic devices seamlessly into daily life due to their excellent flexibility, adjustable three-dimensional (3D) structure, and sustainability. Mechanical strength and conductivity, as two key parameters, play significant roles in this process. Nevertheless, transferring excellent mechanical properties and conductivity to 3D gels simultaneously poses numerous challenges due to their inherent conflict in typical cases. The advancements in functionalizing crosslinking networks at the single cellulosic material level and within the constructed cellulose-based 3D matrix have fundamentally altered their utility. This review provides a systematic and in-depth understanding of designing advanced crosslinking networks in developing cellulose-based conductive gels with superior mechanical strength and conductivity. Here, we introduce the advantages of cellulose in designing conductive gels and the component effect of the gels on mechanical and conductive properties. Then, we systematically summarize the importance and design methods of crosslinking network engineering in balancing these features theoretically. Furthermore, fabrication strategies for achieving superior mechanical strength and enhanced conductivity through structural optimization of cellulose-derived crosslinking networks are investigated, with particular emphasis on interfacial engineering and functional integration mechanisms. We further review the compatibility of crosslinking networks and other key properties (self-healing and low-temperature tolerance). We also discuss advanced analysis methods of structure-performance relationship for developing novel cellulose-based conductive gels with superior physicochemical characteristics. Finally, we introduce potential applications and highlight key technologies to broaden the application prospects of cellulose-based conductive gels for smart wearable devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信