Dynamic modular dysregulation in multilayer networks underlies cognitive and clinical deficits in first-episode schizophrenia

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Xinyi Hu , Xiangyun Long , Jiaxin Wu , Na Liu , Nan Huang , Fei Liu , Ansi Qi , Qi Chen , Zheng Lu
{"title":"Dynamic modular dysregulation in multilayer networks underlies cognitive and clinical deficits in first-episode schizophrenia","authors":"Xinyi Hu ,&nbsp;Xiangyun Long ,&nbsp;Jiaxin Wu ,&nbsp;Na Liu ,&nbsp;Nan Huang ,&nbsp;Fei Liu ,&nbsp;Ansi Qi ,&nbsp;Qi Chen ,&nbsp;Zheng Lu","doi":"10.1016/j.neuroscience.2025.03.059","DOIUrl":null,"url":null,"abstract":"<div><div>Schizophrenia has been identified to exhibit significant abnormalities in brain functional networks, which are likely to underpin the cognitive and functional impairments observed in patients. Graph theoretical analysis revealed the disrupted modularity in schizophrenia, however, the dynamic network abnormalities in schizophrenia remains unclear. We collected the resting-state functional magnetic resonance imaging data from 82 first-episode schizophrenia (FES) patients and 55 healthy control (HC) subjects. Dynamic functional connectivity matrices were constructed and a multilayer network model was employed to run the dynamic modularity analysis. We also performed correlation analyses to investigate the relationship between flexibility, cognitive function and clinical symptoms. Our findings indicate that FES patients exhibit higher multilayer modularity. The node flexibility of FES patients were found elevated in several brain regions, which were included in the default mode network, fronto-parietal network, salience network and visual network. The node flexibility metrics in aberrant brain regions were found to demonstrate significant correlations with cognitive function and negative symptoms in patients with FES. These findings suggest a pathological imbalance in brain network dynamics, where abnormal modular organization might contribute to the cognitive impairment and functional deficits in schizophrenia.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"573 ","pages":"Pages 315-321"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225002611","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia has been identified to exhibit significant abnormalities in brain functional networks, which are likely to underpin the cognitive and functional impairments observed in patients. Graph theoretical analysis revealed the disrupted modularity in schizophrenia, however, the dynamic network abnormalities in schizophrenia remains unclear. We collected the resting-state functional magnetic resonance imaging data from 82 first-episode schizophrenia (FES) patients and 55 healthy control (HC) subjects. Dynamic functional connectivity matrices were constructed and a multilayer network model was employed to run the dynamic modularity analysis. We also performed correlation analyses to investigate the relationship between flexibility, cognitive function and clinical symptoms. Our findings indicate that FES patients exhibit higher multilayer modularity. The node flexibility of FES patients were found elevated in several brain regions, which were included in the default mode network, fronto-parietal network, salience network and visual network. The node flexibility metrics in aberrant brain regions were found to demonstrate significant correlations with cognitive function and negative symptoms in patients with FES. These findings suggest a pathological imbalance in brain network dynamics, where abnormal modular organization might contribute to the cognitive impairment and functional deficits in schizophrenia.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信