S.L. Longato , D. Favero , A. Stockman , A. Nardo , P. Vanmeerbeek , M. Tack , G. Meneghesso , E. Zanoni , C. De Santi , M. Meneghini
{"title":"Impact of drain-source leakage on the dynamic Ron of power HEMTs with p-GaN gate","authors":"S.L. Longato , D. Favero , A. Stockman , A. Nardo , P. Vanmeerbeek , M. Tack , G. Meneghesso , E. Zanoni , C. De Santi , M. Meneghini","doi":"10.1016/j.microrel.2025.115714","DOIUrl":null,"url":null,"abstract":"<div><div>We present an extensive analysis of the impact of drain-source off-state leakage current on the dynamic on-resistance of GaN HEMTs with p-GaN gate. We analyzed two wafers with epitaxial layers grown under different conditions. The difference in the epitaxial layers gives an impact on the off-state leakage. We analyzed all the leakage components demonstrating that the wafer with lower off-state leakage shows a large dynamic R<sub>on</sub> instability. Based on current transient measurements performed in temperature, this difference is explained by considering that a larger leakage (still below the nA) through the unintentionally-doped channel layer can ease the generation of positive charge at the bottom of the buffer, with consequent compensation of the dynamic R<sub>on</sub> effect. The methodology presented in this paper constitutes a rapid and effective approach to evaluate the conductivity of the GaN channel layer, and its contribution to device stability.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"168 ","pages":"Article 115714"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425001271","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present an extensive analysis of the impact of drain-source off-state leakage current on the dynamic on-resistance of GaN HEMTs with p-GaN gate. We analyzed two wafers with epitaxial layers grown under different conditions. The difference in the epitaxial layers gives an impact on the off-state leakage. We analyzed all the leakage components demonstrating that the wafer with lower off-state leakage shows a large dynamic Ron instability. Based on current transient measurements performed in temperature, this difference is explained by considering that a larger leakage (still below the nA) through the unintentionally-doped channel layer can ease the generation of positive charge at the bottom of the buffer, with consequent compensation of the dynamic Ron effect. The methodology presented in this paper constitutes a rapid and effective approach to evaluate the conductivity of the GaN channel layer, and its contribution to device stability.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.