Taoran Yue , Xiaojin Lu , Jiaxi Cai , Yuanping Chen , Shibing Chu
{"title":"YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO","authors":"Taoran Yue , Xiaojin Lu , Jiaxi Cai , Yuanping Chen , Shibing Chu","doi":"10.1016/j.optlastec.2025.112835","DOIUrl":null,"url":null,"abstract":"<div><div>With the advancement of aerospace technology and the increasing demands of military applications, the development of low false-alarm and high-precision infrared small target detection algorithms has emerged as a key focus of research globally. However, the traditional model-driven method is not robust enough when dealing with features such as noise, target size, and contrast. The existing deep-learning methods have limited ability to extract and fuse key features, and it is difficult to achieve high-precision detection in complex backgrounds and when target features are not obvious. To solve these problems, this paper proposes a deep-learning infrared small target detection method that combines image super-resolution technology with multi-scale observation. First, the input infrared images are preprocessed with super-resolution and multiple data enhancements are performed. Secondly, based on the YOLOv5 model, we proposed a new deep-learning network named YOLO-MST. This network includes replacing the SPPF module with the self-designed MSFA module in the backbone, optimizing the neck, and finally adding a multi-scale dynamic detection head to the prediction head. By dynamically fusing features from different scales, the detection head can better adapt to complex scenes. The [email protected] detection rates of this method on three datasets IRIS, SIRST and SIRST+ reach 99.5%, 96.4% and 91.4% respectively, more effectively solving the problems of missed detection, false alarms, and low precision.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"187 ","pages":"Article 112835"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225004268","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of aerospace technology and the increasing demands of military applications, the development of low false-alarm and high-precision infrared small target detection algorithms has emerged as a key focus of research globally. However, the traditional model-driven method is not robust enough when dealing with features such as noise, target size, and contrast. The existing deep-learning methods have limited ability to extract and fuse key features, and it is difficult to achieve high-precision detection in complex backgrounds and when target features are not obvious. To solve these problems, this paper proposes a deep-learning infrared small target detection method that combines image super-resolution technology with multi-scale observation. First, the input infrared images are preprocessed with super-resolution and multiple data enhancements are performed. Secondly, based on the YOLOv5 model, we proposed a new deep-learning network named YOLO-MST. This network includes replacing the SPPF module with the self-designed MSFA module in the backbone, optimizing the neck, and finally adding a multi-scale dynamic detection head to the prediction head. By dynamically fusing features from different scales, the detection head can better adapt to complex scenes. The [email protected] detection rates of this method on three datasets IRIS, SIRST and SIRST+ reach 99.5%, 96.4% and 91.4% respectively, more effectively solving the problems of missed detection, false alarms, and low precision.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems