Francesca Coppola, Manar Abdalrazeq, Florinda Fratianni, Maria Neve Ombra, Bruno Testa, Gokhan Zengin, Jesus Fernando Ayala Zavala, Filomena Nazzaro
{"title":"Rosaceae Honey: Antimicrobial Activity and Prebiotic Properties.","authors":"Francesca Coppola, Manar Abdalrazeq, Florinda Fratianni, Maria Neve Ombra, Bruno Testa, Gokhan Zengin, Jesus Fernando Ayala Zavala, Filomena Nazzaro","doi":"10.3390/antibiotics14030298","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Flowering members of the globally diffused Rosaceae family include popular plants, such as apple, almond, and cherry, which play a fundamental role as honeybee nectariferous and polleniferous agents. Through the production of honey, these plants can also play an indirect role in the prevention and treatment of many diseases, including infections, fighting the occurrence of resistant microorganisms, and concurrently stimulating the growth of beneficial bacteria. <b>Objectives:</b> This study focused on the effect of some Rosaceae plants' honey, including hawthorn, cherry, raspberry, almond, and apple, against the pathogens <i>Acinetobacter baumannii</i>, <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i>, <i>Listeria monocytogenes</i>, <i>Pseudomonas aeruginosa</i>, and <i>Staphylococcus aureus</i>. <b>Results:</b> Results demonstrated the honey's ability to impair swimming motility. A crystal violet test indicated that honey could inhibit the formation and stabilization of biofilms, with inhibition rates up to 59.43% for immature biofilms (showed by apple honey against <i>A. baumannii</i>) and 39.95% for sessile bacterial cells in mature biofilms (when we used cherry honey against <i>S. aureus</i>). In the test with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cherry and apple honey were the most effective in inhibiting sessile cell metabolism honey in both immature (56.47% cherry honey vs. <i>K. pneumoniae</i>) and mature biofilms (54.36% apple honey vs. <i>A. baumannii</i>). Honey stimulated the growth of <i>Lactobacillus bulgaricus</i>, <i>Lacticaseibacillus casei Shirota</i>, <i>Lactobacillus gasseri</i>, <i>Lacticaseibacillus plantarum</i>, and <i>Lacticaseibacillus rhamnosus</i>; hawthorn, raspberry, and almond honey significantly increased the in vitro adhesion capacity of <i>L. bulgaricus</i> and <i>L. casei</i> Shirota. Tests with probiotic supernatants demonstrated honey's ability to inhibit the biofilm formation and metabolism of the pathogens. <b>Conclusions</b>: Our results encourage further studies to assess the potential application of Rosaceae honey for food preservation and in the health field, as it could fight the antimicrobial resistance of food and clinical pathogens, and potentially enhance the host's gut wellness. The use of honey for nanotechnological and biotechnological approaches could be suggested too.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030298","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Flowering members of the globally diffused Rosaceae family include popular plants, such as apple, almond, and cherry, which play a fundamental role as honeybee nectariferous and polleniferous agents. Through the production of honey, these plants can also play an indirect role in the prevention and treatment of many diseases, including infections, fighting the occurrence of resistant microorganisms, and concurrently stimulating the growth of beneficial bacteria. Objectives: This study focused on the effect of some Rosaceae plants' honey, including hawthorn, cherry, raspberry, almond, and apple, against the pathogens Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus. Results: Results demonstrated the honey's ability to impair swimming motility. A crystal violet test indicated that honey could inhibit the formation and stabilization of biofilms, with inhibition rates up to 59.43% for immature biofilms (showed by apple honey against A. baumannii) and 39.95% for sessile bacterial cells in mature biofilms (when we used cherry honey against S. aureus). In the test with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cherry and apple honey were the most effective in inhibiting sessile cell metabolism honey in both immature (56.47% cherry honey vs. K. pneumoniae) and mature biofilms (54.36% apple honey vs. A. baumannii). Honey stimulated the growth of Lactobacillus bulgaricus, Lacticaseibacillus casei Shirota, Lactobacillus gasseri, Lacticaseibacillus plantarum, and Lacticaseibacillus rhamnosus; hawthorn, raspberry, and almond honey significantly increased the in vitro adhesion capacity of L. bulgaricus and L. casei Shirota. Tests with probiotic supernatants demonstrated honey's ability to inhibit the biofilm formation and metabolism of the pathogens. Conclusions: Our results encourage further studies to assess the potential application of Rosaceae honey for food preservation and in the health field, as it could fight the antimicrobial resistance of food and clinical pathogens, and potentially enhance the host's gut wellness. The use of honey for nanotechnological and biotechnological approaches could be suggested too.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.