Multiplex Real-Time Polymerase Chain Reaction and Recombinase Polymerase Amplification: Methods for Quick and Cost-Effective Detection of Vancomycin-Resistant Enterococci (VRE).
Ibukun Elizabeth Osadare, Abdinasir Abdilahi, Martin Reinicke, Celia Diezel, Maximilian Collatz, Annett Reissig, Stefan Monecke, Ralf Ehricht
{"title":"Multiplex Real-Time Polymerase Chain Reaction and Recombinase Polymerase Amplification: Methods for Quick and Cost-Effective Detection of Vancomycin-Resistant Enterococci (VRE).","authors":"Ibukun Elizabeth Osadare, Abdinasir Abdilahi, Martin Reinicke, Celia Diezel, Maximilian Collatz, Annett Reissig, Stefan Monecke, Ralf Ehricht","doi":"10.3390/antibiotics14030295","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>/<b>Objectives</b>: Vancomycin-resistant enterococci (VRE) are one of the leading causes of antibiotic-resistant infections in the hospital setting worldwide, and this has become a major issue, because most patients infected with this strain are difficult to treat. Multiplex real-time polymerase chain reaction (RT PCR) is an advantageous technique that can amplify multiple targets in a single reaction, and can be used to quickly detect specific targets in VRE within two hours, starting from suspected colonies of bacterial cultures, without sample preparation. <b>Methods</b>: In this study, we selected the glycopeptide/vancomycin resistance genes that are most common in clinical settings, <i>vanA</i> and <i>vanB</i>, in combination with the species markers <i>ddl_faecium</i> and <i>ddl_faecalis</i> for the most common VRE species-<i>Enterococcus faecium</i> and <i>Enterococcus faecalis</i>. <b>Results</b>: DNA from forty clinical VRE strains was prepared using a fast and economic heat lysis method, and a multiplex real-time PCR assay was optimized and carried out subsequently. The results were in concordance with the results from recombinase polymerase amplification (RPA) of the same VRE samples. <b>Conclusions</b>: Multiplex RT PCR and RPA for VRE detection proffers a second method for the confirmation of vancomycin resistance, and it can be developed as a fast screening assay for patients before admission into high-risk settings.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Vancomycin-resistant enterococci (VRE) are one of the leading causes of antibiotic-resistant infections in the hospital setting worldwide, and this has become a major issue, because most patients infected with this strain are difficult to treat. Multiplex real-time polymerase chain reaction (RT PCR) is an advantageous technique that can amplify multiple targets in a single reaction, and can be used to quickly detect specific targets in VRE within two hours, starting from suspected colonies of bacterial cultures, without sample preparation. Methods: In this study, we selected the glycopeptide/vancomycin resistance genes that are most common in clinical settings, vanA and vanB, in combination with the species markers ddl_faecium and ddl_faecalis for the most common VRE species-Enterococcus faecium and Enterococcus faecalis. Results: DNA from forty clinical VRE strains was prepared using a fast and economic heat lysis method, and a multiplex real-time PCR assay was optimized and carried out subsequently. The results were in concordance with the results from recombinase polymerase amplification (RPA) of the same VRE samples. Conclusions: Multiplex RT PCR and RPA for VRE detection proffers a second method for the confirmation of vancomycin resistance, and it can be developed as a fast screening assay for patients before admission into high-risk settings.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.