Metagenomics as a Transformative Tool for Antibiotic Resistance Surveillance: Highlighting the Impact of Mobile Genetic Elements with a Focus on the Complex Role of Phages.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Nikoline S Olsen, Leise Riber
{"title":"Metagenomics as a Transformative Tool for Antibiotic Resistance Surveillance: Highlighting the Impact of Mobile Genetic Elements with a Focus on the Complex Role of Phages.","authors":"Nikoline S Olsen, Leise Riber","doi":"10.3390/antibiotics14030296","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive use of antibiotics in human healthcare as well as in agricultural and environmental settings has led to the emergence and spread of antibiotic-resistant bacteria, rendering many infections increasingly difficult to treat. Coupled with the limited development of new antibiotics, the rise of antimicrobial resistance (AMR) has caused a major health crisis worldwide, which calls for immediate action. Strengthening AMR surveillance systems is, therefore, crucial to global and national efforts in combating this escalating threat. This review explores the potential of metagenomics, a sequenced-based approach to analyze entire microbial communities without the need for cultivation, as a transformative and rapid tool for improving AMR surveillance strategies as compared to traditional cultivation-based methods. We emphasize the importance of monitoring mobile genetic elements (MGEs), such as integrons, transposons, plasmids, and bacteriophages (phages), in relation to their critical role in facilitating the dissemination of genetic resistance determinants via horizontal gene transfer (HGT) across diverse environments and clinical settings. In this context, the strengths and limitations of current bioinformatic tools designed to detect AMR-associated MGEs in metagenomic datasets, including the emerging potential of predictive machine learning models, are evaluated. Moreover, the controversial role of phages in AMR transmission is discussed alongside the potential of phage therapy as a promising alternative to conventional antibiotic treatment.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive use of antibiotics in human healthcare as well as in agricultural and environmental settings has led to the emergence and spread of antibiotic-resistant bacteria, rendering many infections increasingly difficult to treat. Coupled with the limited development of new antibiotics, the rise of antimicrobial resistance (AMR) has caused a major health crisis worldwide, which calls for immediate action. Strengthening AMR surveillance systems is, therefore, crucial to global and national efforts in combating this escalating threat. This review explores the potential of metagenomics, a sequenced-based approach to analyze entire microbial communities without the need for cultivation, as a transformative and rapid tool for improving AMR surveillance strategies as compared to traditional cultivation-based methods. We emphasize the importance of monitoring mobile genetic elements (MGEs), such as integrons, transposons, plasmids, and bacteriophages (phages), in relation to their critical role in facilitating the dissemination of genetic resistance determinants via horizontal gene transfer (HGT) across diverse environments and clinical settings. In this context, the strengths and limitations of current bioinformatic tools designed to detect AMR-associated MGEs in metagenomic datasets, including the emerging potential of predictive machine learning models, are evaluated. Moreover, the controversial role of phages in AMR transmission is discussed alongside the potential of phage therapy as a promising alternative to conventional antibiotic treatment.

元基因组学是抗生素耐药性监测的变革性工具:以噬菌体的复杂作用为重点,突出移动遗传因子的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信