Synergistic Antibacterial Effect of Mucus Fraction from Cornu aspersum and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients.
Mila Dobromirova Kaleva, Momchil Kermedchiev, Lyudmila Velkova, Maya Margaritova Zaharieva, Aleksandar Dolashki, Maria Todorova, Maya Guncheva, Pavlina Dolashka, Hristo Miladinov Najdenski
{"title":"Synergistic Antibacterial Effect of Mucus Fraction from <i>Cornu aspersum</i> and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients.","authors":"Mila Dobromirova Kaleva, Momchil Kermedchiev, Lyudmila Velkova, Maya Margaritova Zaharieva, Aleksandar Dolashki, Maria Todorova, Maya Guncheva, Pavlina Dolashka, Hristo Miladinov Najdenski","doi":"10.3390/antibiotics14030260","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The treatment of diabetic foot ulcers (DFU) is a challenging medical problem of extreme clinical and social importance, as a consequence of the emerging antibiotic resistance and decreased quality of life of diabetic patients due to impaired wound healing. One of the current trends in world science is the search for biologically active substances derived from living organisms. Biologically active peptides from snail mucus attract considerable scientific interest because of their pleiotropic pharmacological properties. The aim of our study was to evaluate the activity of a combination between a snail mucus protein fraction (MW > 20 kDa) obtained from the garden snail <i>Cornu aspersum</i> and the clinically applied antibacterial chemotherapeutic ciprofloxacin on pathogenic bacterial strains isolated from DFU. <b>Results</b>: The test bacterial strains were characterized as multidrug resistant. The combination between ciprofloxacin and the snail mucus fraction of interest led to additive or synergistic effects depending on the test strain. The mucus fraction exerted a well-pronounced wound-healing effect and no cytotoxicity on normal human fibroblasts and keratinocytes. <b>Methods</b>: The snail mucus was obtained by a patented technology (BG Utility model 2097/2015) and its electrophoretic profile was presented by SDS-PAGE. The bacterial strains were identified and tested for antimicrobial susceptibility (BD Phoenix M50 and Kirby-Bauer assay). The in vitro cytotoxicity of the mucus was evaluated by ISO 10995-5. The antimicrobial activity and combination effects were tested through ISO 20776/1 and the Checkerboard assay. <b>Conclusions</b>: The obtained results are promising and open new horizons for the development of novel combination treatment schemas for healing of infected DFU.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030260","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The treatment of diabetic foot ulcers (DFU) is a challenging medical problem of extreme clinical and social importance, as a consequence of the emerging antibiotic resistance and decreased quality of life of diabetic patients due to impaired wound healing. One of the current trends in world science is the search for biologically active substances derived from living organisms. Biologically active peptides from snail mucus attract considerable scientific interest because of their pleiotropic pharmacological properties. The aim of our study was to evaluate the activity of a combination between a snail mucus protein fraction (MW > 20 kDa) obtained from the garden snail Cornu aspersum and the clinically applied antibacterial chemotherapeutic ciprofloxacin on pathogenic bacterial strains isolated from DFU. Results: The test bacterial strains were characterized as multidrug resistant. The combination between ciprofloxacin and the snail mucus fraction of interest led to additive or synergistic effects depending on the test strain. The mucus fraction exerted a well-pronounced wound-healing effect and no cytotoxicity on normal human fibroblasts and keratinocytes. Methods: The snail mucus was obtained by a patented technology (BG Utility model 2097/2015) and its electrophoretic profile was presented by SDS-PAGE. The bacterial strains were identified and tested for antimicrobial susceptibility (BD Phoenix M50 and Kirby-Bauer assay). The in vitro cytotoxicity of the mucus was evaluated by ISO 10995-5. The antimicrobial activity and combination effects were tested through ISO 20776/1 and the Checkerboard assay. Conclusions: The obtained results are promising and open new horizons for the development of novel combination treatment schemas for healing of infected DFU.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.