Artificial Intelligence in Bacterial Infections Control: A Scoping Review.

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Rasha Abu-El-Ruz, Mohannad Natheef AbuHaweeleh, Ahmad Hamdan, Humam Emad Rajha, Jood Mudar Sarah, Kaoutar Barakat, Susu M Zughaier
{"title":"Artificial Intelligence in Bacterial Infections Control: A Scoping Review.","authors":"Rasha Abu-El-Ruz, Mohannad Natheef AbuHaweeleh, Ahmad Hamdan, Humam Emad Rajha, Jood Mudar Sarah, Kaoutar Barakat, Susu M Zughaier","doi":"10.3390/antibiotics14030256","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Artificial intelligence has made significant strides in healthcare, contributing to diagnosing, treating, monitoring, preventing, and testing various diseases. Despite its broad adoption, clinical consensus on AI's role in infection control remains uncertain. This scoping review aims to understand the characteristics of AI applications in bacterial infection control. <b>Results</b>: This review examines the characteristics of AI applications in bacterial infection control, analyzing 54 eligible studies across 5 thematic scopes. The search from 3 databases yielded a total of 1165 articles, only 54 articles met the eligibility criteria and were extracted and analyzed. Five thematic scopes were synthesized from the extracted data; countries, aim, type of AI, advantages, and limitations of AI applications in bacterial infection prevention and control. The majority of articles were reported from high-income countries, mainly by the USA. The most common aims are pathogen identification and infection risk assessment. The most common AI used in infection control is machine learning. The commonest reported advantage is predictive modeling and risk assessment, and the commonest disadvantage is generalizability of the models. <b>Methods</b>: This scoping review was developed according to Arksey and O'Malley frameworks. A comprehensive search across PubMed, Embase, and Web of Science was conducted using broad search terms, with no restrictions. Publications focusing on AI in infection control and prevention were included. Citations were managed via EndNote, with initial title and abstract screening by two authors. Data underwent comprehensive narrative mapping and categorization, followed by the construction of thematic scopes. <b>Conclusions:</b> Artificial intelligence applications in infection control need to be strengthened for low-income countries. More efforts should be dedicated to investing in models that have proven their effectiveness in infection control, to maximize their utilization and tackle challenges.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030256","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Artificial intelligence has made significant strides in healthcare, contributing to diagnosing, treating, monitoring, preventing, and testing various diseases. Despite its broad adoption, clinical consensus on AI's role in infection control remains uncertain. This scoping review aims to understand the characteristics of AI applications in bacterial infection control. Results: This review examines the characteristics of AI applications in bacterial infection control, analyzing 54 eligible studies across 5 thematic scopes. The search from 3 databases yielded a total of 1165 articles, only 54 articles met the eligibility criteria and were extracted and analyzed. Five thematic scopes were synthesized from the extracted data; countries, aim, type of AI, advantages, and limitations of AI applications in bacterial infection prevention and control. The majority of articles were reported from high-income countries, mainly by the USA. The most common aims are pathogen identification and infection risk assessment. The most common AI used in infection control is machine learning. The commonest reported advantage is predictive modeling and risk assessment, and the commonest disadvantage is generalizability of the models. Methods: This scoping review was developed according to Arksey and O'Malley frameworks. A comprehensive search across PubMed, Embase, and Web of Science was conducted using broad search terms, with no restrictions. Publications focusing on AI in infection control and prevention were included. Citations were managed via EndNote, with initial title and abstract screening by two authors. Data underwent comprehensive narrative mapping and categorization, followed by the construction of thematic scopes. Conclusions: Artificial intelligence applications in infection control need to be strengthened for low-income countries. More efforts should be dedicated to investing in models that have proven their effectiveness in infection control, to maximize their utilization and tackle challenges.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信