Guusje Collin, Joshua E Goldenberg, Xiao Chang, Zhenghan Qi, Susan Whitfield-Gabrieli, Wiepke Cahn, Jijun Wang, William S Stone, Matcheri S Keshavan, Martha E Shenton
{"title":"Brain Markers of Resilience to Psychosis in High-Risk Individuals: A Systematic Review and Label-Based Meta-Analysis of Multimodal MRI Studies.","authors":"Guusje Collin, Joshua E Goldenberg, Xiao Chang, Zhenghan Qi, Susan Whitfield-Gabrieli, Wiepke Cahn, Jijun Wang, William S Stone, Matcheri S Keshavan, Martha E Shenton","doi":"10.3390/brainsci15030314","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Most individuals who have a familial or clinical risk of developing psychosis remain free from psychopathology. Identifying neural markers of resilience in these at-risk individuals may help clarify underlying mechanisms and yield novel targets for early intervention. However, in contrast to studies on risk biomarkers, studies on neural markers of resilience to psychosis are scarce. The current study aimed to identify potential brain markers of resilience to psychosis. <b>Methods</b>: A systematic review of the literature yielded a total of 43 MRI studies that reported resilience-associated brain changes in individuals with an elevated risk for psychosis. Label-based meta-analysis was used to synthesize findings across MRI modalities. <b>Results</b>: Resilience-associated brain changes were significantly overreported in the default mode and language network, and among highly connected and central brain regions. <b>Conclusions</b>: These findings suggest that the DMN and language-associated areas and central brain hubs may be hotspots for resilience-associated brain changes. These neural systems are thus of key interest as targets of inquiry and, possibly, intervention in at-risk populations.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15030314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Most individuals who have a familial or clinical risk of developing psychosis remain free from psychopathology. Identifying neural markers of resilience in these at-risk individuals may help clarify underlying mechanisms and yield novel targets for early intervention. However, in contrast to studies on risk biomarkers, studies on neural markers of resilience to psychosis are scarce. The current study aimed to identify potential brain markers of resilience to psychosis. Methods: A systematic review of the literature yielded a total of 43 MRI studies that reported resilience-associated brain changes in individuals with an elevated risk for psychosis. Label-based meta-analysis was used to synthesize findings across MRI modalities. Results: Resilience-associated brain changes were significantly overreported in the default mode and language network, and among highly connected and central brain regions. Conclusions: These findings suggest that the DMN and language-associated areas and central brain hubs may be hotspots for resilience-associated brain changes. These neural systems are thus of key interest as targets of inquiry and, possibly, intervention in at-risk populations.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.