Evangelia Chrysanthi Kouklari, Evdokia Tagkouli, Vassiliki Ntre, Artemios Pehlivanidis, Stella Tsermentseli, Nikos C Stefanis, Chris Pantelis, Katerina Papanikolaou
{"title":"Hot and Cool Executive Function in Children with Autism Spectrum Disorder and Schizotypal Traits.","authors":"Evangelia Chrysanthi Kouklari, Evdokia Tagkouli, Vassiliki Ntre, Artemios Pehlivanidis, Stella Tsermentseli, Nikos C Stefanis, Chris Pantelis, Katerina Papanikolaou","doi":"10.3390/brainsci15030282","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Schizotypal traits are notably prevalent among children diagnosed with Autism spectrum disorder (ASD). Both conditions commonly exhibit impairments in executive functions (EF), which encompass cool and hot processes. The observed deficits in these EF domains across ASD and schizotypy underscore a compelling need to investigate how their co-occurrence impacts EF. <b>Methods:</b> This study investigated the impact of co-occurring autistic and schizotypal traits on EF in 63 children diagnosed with ASD, aged 7 to 12 years. Participants were assessed using the Autism Diagnostic Observation Schedule-2 (ADOS-2), the Melbourne Assessment of Schizotypy in Kids (MASK), and a battery of hot and cool EF tests. <b>Results:</b> Correlational analyses revealed a significant association between MASK score and working memory, as well as between ADOS scores and various cool EF components (i.e., working memory, inhibition and planning). Hierarchical regression analyses showed that the interaction between ADOS and MASK scores significantly predicted performance on hot EF (i.e., affective decision-making), but not on cool EF tasks. <b>Conclusions:</b> These findings suggest that the co-occurrence of ASD and schizotypal traits may have differential effects on cool and hot EF domains. Understanding how the combination of autistic and schizotypal traits affects cognitive processes may inform tailored interventions and support strategies for individuals presenting with these traits.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15030282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Schizotypal traits are notably prevalent among children diagnosed with Autism spectrum disorder (ASD). Both conditions commonly exhibit impairments in executive functions (EF), which encompass cool and hot processes. The observed deficits in these EF domains across ASD and schizotypy underscore a compelling need to investigate how their co-occurrence impacts EF. Methods: This study investigated the impact of co-occurring autistic and schizotypal traits on EF in 63 children diagnosed with ASD, aged 7 to 12 years. Participants were assessed using the Autism Diagnostic Observation Schedule-2 (ADOS-2), the Melbourne Assessment of Schizotypy in Kids (MASK), and a battery of hot and cool EF tests. Results: Correlational analyses revealed a significant association between MASK score and working memory, as well as between ADOS scores and various cool EF components (i.e., working memory, inhibition and planning). Hierarchical regression analyses showed that the interaction between ADOS and MASK scores significantly predicted performance on hot EF (i.e., affective decision-making), but not on cool EF tasks. Conclusions: These findings suggest that the co-occurrence of ASD and schizotypal traits may have differential effects on cool and hot EF domains. Understanding how the combination of autistic and schizotypal traits affects cognitive processes may inform tailored interventions and support strategies for individuals presenting with these traits.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.