Murine Non-Transgenic Models of Alzheimer's Disease Pathology: Focus on Risk Factors.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
Maricarmen Hernández-Rodríguez, Juan Manuel Vega López, Martín Martínez-Rosas, María Inés Nicolás-Vázquez, Elvia Mera Jiménez
{"title":"Murine Non-Transgenic Models of Alzheimer's Disease Pathology: Focus on Risk Factors.","authors":"Maricarmen Hernández-Rodríguez, Juan Manuel Vega López, Martín Martínez-Rosas, María Inés Nicolás-Vázquez, Elvia Mera Jiménez","doi":"10.3390/brainsci15030322","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) represents a significant challenge among neurodegenerative disorders, as effective treatments and therapies remain largely undeveloped. Despite extensive research efforts employing various methodologies and diverse genetic models focused on amyloid-β (Aβ) pathology, the research for effective therapeutic strategies remains inconclusive. The key pathological features of AD include Aβ senile plaques, neurofibrillary tangles (NFTs), and the activation of neuroinflammatory pathways. Presently, investigations into AD and assessing potential treatments predominantly utilize Aβ transgenic models. Conversely, non-transgenic models may provide valuable insights into the multifaceted pathological states associated with AD. Thus, these models may serve as practical complementary tools for evaluating therapeutic and intervention strategies, since the primary AD risk factors are most frequently modeled. This review aims to critically assess the existing literature on AD non-transgenic models induced by streptozotocin, scopolamine, aging, mechanical stress, metals, and dietary patterns to enhance their application in AD research.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci15030322","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) represents a significant challenge among neurodegenerative disorders, as effective treatments and therapies remain largely undeveloped. Despite extensive research efforts employing various methodologies and diverse genetic models focused on amyloid-β (Aβ) pathology, the research for effective therapeutic strategies remains inconclusive. The key pathological features of AD include Aβ senile plaques, neurofibrillary tangles (NFTs), and the activation of neuroinflammatory pathways. Presently, investigations into AD and assessing potential treatments predominantly utilize Aβ transgenic models. Conversely, non-transgenic models may provide valuable insights into the multifaceted pathological states associated with AD. Thus, these models may serve as practical complementary tools for evaluating therapeutic and intervention strategies, since the primary AD risk factors are most frequently modeled. This review aims to critically assess the existing literature on AD non-transgenic models induced by streptozotocin, scopolamine, aging, mechanical stress, metals, and dietary patterns to enhance their application in AD research.

小鼠非转基因阿尔茨海默病病理模型:关注危险因素。
阿尔茨海默病(AD)是神经退行性疾病中的一个重大挑战,因为有效的治疗和治疗方法在很大程度上尚未开发出来。尽管对淀粉样蛋白-β (Aβ)病理进行了广泛的研究,采用了各种方法和不同的遗传模型,但对有效治疗策略的研究仍然没有定论。AD的主要病理特征包括Aβ老年斑、神经原纤维缠结(nft)和神经炎症通路的激活。目前,对AD的研究和潜在治疗方法的评估主要利用Aβ转基因模型。相反,非转基因模型可能为与AD相关的多方面病理状态提供有价值的见解。因此,这些模型可以作为评估治疗和干预策略的实用补充工具,因为阿尔茨海默病的主要危险因素最常被建模。本文旨在对链脲佐菌素、东莨菪碱、衰老、机械应力、金属和饮食模式诱导的AD非转基因模型进行综述,以促进其在AD研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Sciences
Brain Sciences Neuroscience-General Neuroscience
CiteScore
4.80
自引率
9.10%
发文量
1472
审稿时长
18.71 days
期刊介绍: Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信