G. Ferreira , C.L. Teets , H. Galyon , A.L. Cappellina , M.E. Schultz , K.M. Payne , S. Stewart , W.E. Thomason
{"title":"Effect of maturity at harvest of small-grain grasses on the nutritional composition of forage and ration formulation","authors":"G. Ferreira , C.L. Teets , H. Galyon , A.L. Cappellina , M.E. Schultz , K.M. Payne , S. Stewart , W.E. Thomason","doi":"10.3168/jds.2024-26020","DOIUrl":null,"url":null,"abstract":"<div><div>We hypothesized that, relative to harvesting small-grain grasses at the soft dough stage (SFT) of maturity, harvesting small-grain grasses at the boot stage (BT) of maturity would result in less expensive dairy rations when commodity prices are high but not when commodity prices are low. Small plots of small-grain grasses were planted during the fall of 2020 and 2021 in Blacksburg, Blackstone, and Orange, Virginia. In each year and location, 2 varieties of barley, 2 varieties of rye, and 4 varieties of triticale were planted in plots replicated 6 times, yielding 288 plots. Within each year and location, we harvested half of the plots at BT and the other half at SFT. For each of the 6 small-grain grasses, we formulated 8 rations according to 8 different scenarios using the least-cost optimizer. The scenarios included high and low commodity prices, high and low dietary forage (60% and 40% forage, respectively), and the inclusion of small-grain grasses harvested at BT or SFT. Harvesting at SFT yielded 107% to 205% more DM than harvesting at BT. Relative to BT, small-grain grasses harvested at SFT had greater concentrations of OM, NDF, ADF, ADL, and starch but lower concentrations of CP. Relative to BT, small-grain grasses harvested at SFT also had a greater concentration of undegraded NDF (NDF basis). Species had minimal influence on the nutritional quality of small-grain grasses for silage. Under a low-price scenario, the ration formulation system ignored all 6 small-grain grass silages and included corn silage as the only forage source when we did not limit its inclusion. Under a high-price scenario, the ration formulation system included all 6 small-grain grass silages when formulating low-forage diets with unlimited corn silage. However, a preference between BT and SFT stages did not exist, with the optimizer not consistently selecting a specific maturity stage. After evaluating the yields, the chemical composition, and the effects on ration formulation in this study, future studies should aim to evaluate the influence of maturity at harvest of small-grain grasses on cow performance and environmental impacts.</div></div>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":"108 5","pages":"Pages 4934-4945"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022030225001560","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We hypothesized that, relative to harvesting small-grain grasses at the soft dough stage (SFT) of maturity, harvesting small-grain grasses at the boot stage (BT) of maturity would result in less expensive dairy rations when commodity prices are high but not when commodity prices are low. Small plots of small-grain grasses were planted during the fall of 2020 and 2021 in Blacksburg, Blackstone, and Orange, Virginia. In each year and location, 2 varieties of barley, 2 varieties of rye, and 4 varieties of triticale were planted in plots replicated 6 times, yielding 288 plots. Within each year and location, we harvested half of the plots at BT and the other half at SFT. For each of the 6 small-grain grasses, we formulated 8 rations according to 8 different scenarios using the least-cost optimizer. The scenarios included high and low commodity prices, high and low dietary forage (60% and 40% forage, respectively), and the inclusion of small-grain grasses harvested at BT or SFT. Harvesting at SFT yielded 107% to 205% more DM than harvesting at BT. Relative to BT, small-grain grasses harvested at SFT had greater concentrations of OM, NDF, ADF, ADL, and starch but lower concentrations of CP. Relative to BT, small-grain grasses harvested at SFT also had a greater concentration of undegraded NDF (NDF basis). Species had minimal influence on the nutritional quality of small-grain grasses for silage. Under a low-price scenario, the ration formulation system ignored all 6 small-grain grass silages and included corn silage as the only forage source when we did not limit its inclusion. Under a high-price scenario, the ration formulation system included all 6 small-grain grass silages when formulating low-forage diets with unlimited corn silage. However, a preference between BT and SFT stages did not exist, with the optimizer not consistently selecting a specific maturity stage. After evaluating the yields, the chemical composition, and the effects on ration formulation in this study, future studies should aim to evaluate the influence of maturity at harvest of small-grain grasses on cow performance and environmental impacts.
期刊介绍:
The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.