Scalable Vertical In–Ga–As Nanowire MOSFET With 67 mV/dec at 126μm Gate Width

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Anette Löfstrand;Marcus E. Sandberg;Johannes Svensson;Lars Fhager
{"title":"Scalable Vertical In–Ga–As Nanowire MOSFET With 67 mV/dec at 126μm Gate Width","authors":"Anette Löfstrand;Marcus E. Sandberg;Johannes Svensson;Lars Fhager","doi":"10.1109/LED.2025.3535408","DOIUrl":null,"url":null,"abstract":"Heterogeneous integration of III-V narrow bandgap transistors on silicon technology is desirable for high frequency circuit implementations. Such high-speed transistors must, however, scale to large gate widths to be suitable for general circuit design. Averaging among many variable channels is a key challenge for nanowire devices. A simplified, but high-speed compatible, nanowire device process was developed here. It utilizes metal plugs to reduce complexity in the gate patterning step. It also implements a spin coated BCB low-k dielectric as top interlayer. A vertical In-Ga–As MOSFET with 1600 nanowire channels and 110 nm gate length achieved a minimum subthreshold swing of <inline-formula> <tex-math>$\\mathrm {67~\\mathrm{mV/dec} }$ </tex-math></inline-formula> at <inline-formula> <tex-math>$\\mathrm {126~\\mu \\text {m} }$ </tex-math></inline-formula> gate width. The maximum transconductance was <inline-formula> <tex-math>$\\mathrm {0.88~\\text {m}\\text {S} /\\mu \\text {m}}$ </tex-math></inline-formula> at 0.5 V drain-source voltage, with <inline-formula> <tex-math>$\\mathrm {0.22~\\text {m}\\text {A} /\\mu \\text {m}}$ </tex-math></inline-formula> normalized drain current. These long-channel results are on par with state-of-the art, but achieved for a device scaled to unprecedented device width. In tandem with the BCB interlayer, these results promise a back-end-of-line compatible high-speed vertical nanowire technology for integration on silicon.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"560-563"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10855483/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous integration of III-V narrow bandgap transistors on silicon technology is desirable for high frequency circuit implementations. Such high-speed transistors must, however, scale to large gate widths to be suitable for general circuit design. Averaging among many variable channels is a key challenge for nanowire devices. A simplified, but high-speed compatible, nanowire device process was developed here. It utilizes metal plugs to reduce complexity in the gate patterning step. It also implements a spin coated BCB low-k dielectric as top interlayer. A vertical In-Ga–As MOSFET with 1600 nanowire channels and 110 nm gate length achieved a minimum subthreshold swing of $\mathrm {67~\mathrm{mV/dec} }$ at $\mathrm {126~\mu \text {m} }$ gate width. The maximum transconductance was $\mathrm {0.88~\text {m}\text {S} /\mu \text {m}}$ at 0.5 V drain-source voltage, with $\mathrm {0.22~\text {m}\text {A} /\mu \text {m}}$ normalized drain current. These long-channel results are on par with state-of-the art, but achieved for a device scaled to unprecedented device width. In tandem with the BCB interlayer, these results promise a back-end-of-line compatible high-speed vertical nanowire technology for integration on silicon.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信