Approach to High-Performance Indium Gallium Zinc Oxide Transistors by Thermal Atomic Layer Deposition

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xingwei Ding;Luoqiang Wang;Kun Bai;Jun Yang;Jianhua Zhang
{"title":"Approach to High-Performance Indium Gallium Zinc Oxide Transistors by Thermal Atomic Layer Deposition","authors":"Xingwei Ding;Luoqiang Wang;Kun Bai;Jun Yang;Jianhua Zhang","doi":"10.1109/LED.2025.3539304","DOIUrl":null,"url":null,"abstract":"Amorphous indium gallium zinc oxide (a-IGZO) thin films have been investigated to meet the high-resolution demands of augmented reality (AR) and virtual reality (VR) applications. In this study, we report on thin-film transistors (TFTs) derived from fully thermal atomic layer deposition (ALD), using IGZO as the channel layer and Al2O3 as the gate dielectric. By optimizing the deposition sequence and post-treatment processes, we achieved a high field-effect mobility of 52.5 cm2/Vs and a steep subthreshold swing of 116 mV/decade. This exceptional performance is attributed to the elevated In2O3 content in the IGZO thin films, which induces a substantial increase in sub-gap states adjacent to the conduction band minimum (CBM) and valence band maximum (VBM) while concurrently reducing the bandgap. At an elevated measurement temperature of 125 °C, the device exhibited an enhanced field-effect mobility of 60.4 cm2/Vs. These findings offer a new approach for optimizing metal oxide-based electronics.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"588-591"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10876182/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous indium gallium zinc oxide (a-IGZO) thin films have been investigated to meet the high-resolution demands of augmented reality (AR) and virtual reality (VR) applications. In this study, we report on thin-film transistors (TFTs) derived from fully thermal atomic layer deposition (ALD), using IGZO as the channel layer and Al2O3 as the gate dielectric. By optimizing the deposition sequence and post-treatment processes, we achieved a high field-effect mobility of 52.5 cm2/Vs and a steep subthreshold swing of 116 mV/decade. This exceptional performance is attributed to the elevated In2O3 content in the IGZO thin films, which induces a substantial increase in sub-gap states adjacent to the conduction band minimum (CBM) and valence band maximum (VBM) while concurrently reducing the bandgap. At an elevated measurement temperature of 125 °C, the device exhibited an enhanced field-effect mobility of 60.4 cm2/Vs. These findings offer a new approach for optimizing metal oxide-based electronics.
用热原子层沉积方法制备高性能铟镓锌氧化物晶体管
为了满足增强现实(AR)和虚拟现实(VR)应用的高分辨率需求,研究了非晶铟镓氧化锌(a-IGZO)薄膜。在这项研究中,我们报道了由全热原子层沉积(ALD)得到的薄膜晶体管(TFTs),使用IGZO作为沟道层,Al2O3作为栅极介质。通过优化沉积顺序和后处理工艺,我们获得了52.5 cm2/Vs的高场效应迁移率和116 mV/ 10年的陡亚阈值摆幅。这种特殊的性能是由于IGZO薄膜中In2O3含量的增加,导致导带最小值(CBM)和价带最大值(VBM)附近的子隙态大幅增加,同时减小了带隙。在125℃的测量温度下,器件的场效应迁移率达到了60.4 cm2/Vs。这些发现为优化金属氧化物基电子学提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信