{"title":"In-depth sensitivity analysis of heating demand and overheating in Dutch terraced houses using interpretable machine learning","authors":"Alexis Cvetkov-Iliev , Vasilis Soulios , Luyi Xu , Günsu Merin Abbas , Evangelos Kyrou , Lisanne Havinga , Pieter Jan Hoes , Roel Loonen , Joaquin Vanschoren","doi":"10.1016/j.enbuild.2025.115611","DOIUrl":null,"url":null,"abstract":"<div><div>Sensitivity analyses are often performed to facilitate the design or modeling of complex building systems by focusing on the most influential parameters. However, the insights they produce are generally limited to a ranking of the parameters’ impact. Instead, many applications could benefit from more advanced insights, such as how these impacts vary across different parameter values and scenarios. In addition, sensitivity analysis results should be easily interpretable to facilitate subsequent decision making. With these goals in mind, this paper introduces a novel sensitivity analysis method based on partial dependence (PD) plots. PD plots are further combined with dictionary learning, advanced visualizations, and surrogate models to facilitate their analysis and reduce their computational cost. Using this method, the effect of 26 parameters on heating demand and overheating in Dutch terraced houses is investigated. Two surrogate models are trained on 66,000 EnergyPlus simulations to predict the annual heating demand and percentage of overheating hours with excellent precision (<span><math><mrow><mo>≈</mo><mn>3</mn></mrow></math></span>–4 % of percentage error). The benefits of our approach are demonstrated through 3 use cases: 1) a comparison of the impact and energy-overheating trade-off of insulation measures across various scenarios, 2) improving the design of parametric simulations by eliminating redundant parameter values, and 3) uncovering complex behaviors in simulation or surrogate models, to build trust in them and diagnose potential modeling or training errors. Finally, our results suggest that surrogate models can be trained on much less data (1000–3000) without compromising sensitivity analysis results.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"337 ","pages":"Article 115611"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877882500341X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensitivity analyses are often performed to facilitate the design or modeling of complex building systems by focusing on the most influential parameters. However, the insights they produce are generally limited to a ranking of the parameters’ impact. Instead, many applications could benefit from more advanced insights, such as how these impacts vary across different parameter values and scenarios. In addition, sensitivity analysis results should be easily interpretable to facilitate subsequent decision making. With these goals in mind, this paper introduces a novel sensitivity analysis method based on partial dependence (PD) plots. PD plots are further combined with dictionary learning, advanced visualizations, and surrogate models to facilitate their analysis and reduce their computational cost. Using this method, the effect of 26 parameters on heating demand and overheating in Dutch terraced houses is investigated. Two surrogate models are trained on 66,000 EnergyPlus simulations to predict the annual heating demand and percentage of overheating hours with excellent precision (–4 % of percentage error). The benefits of our approach are demonstrated through 3 use cases: 1) a comparison of the impact and energy-overheating trade-off of insulation measures across various scenarios, 2) improving the design of parametric simulations by eliminating redundant parameter values, and 3) uncovering complex behaviors in simulation or surrogate models, to build trust in them and diagnose potential modeling or training errors. Finally, our results suggest that surrogate models can be trained on much less data (1000–3000) without compromising sensitivity analysis results.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.