Effects of basal division of posterior pallial amygdala on the motor behaviors in pigeons based on transcriptome analysis

IF 3.5 3区 医学 Q2 NEUROSCIENCES
Xinmao Tian , Zishi Wang , Chunzhi Yi , Yuhua Shi , Chongchong Jia , Xiujuan Li , Feng Jiang , Zhenlong Wang
{"title":"Effects of basal division of posterior pallial amygdala on the motor behaviors in pigeons based on transcriptome analysis","authors":"Xinmao Tian ,&nbsp;Zishi Wang ,&nbsp;Chunzhi Yi ,&nbsp;Yuhua Shi ,&nbsp;Chongchong Jia ,&nbsp;Xiujuan Li ,&nbsp;Feng Jiang ,&nbsp;Zhenlong Wang","doi":"10.1016/j.brainresbull.2025.111322","DOIUrl":null,"url":null,"abstract":"<div><div>The basal division of posterior pallial amygdala (PoAb) was one important part of the amygdala in birds. PoAb mainly mediated turning behavior. However, the regulating neuromechanisms of PoAb in motor behavior was not clear yet. In this study, we selected septalis lateralis (SL) as the stimulated nucleus because it was closely associated with PoAb and had clear neuroregulatory functions, and we also used unrelated nuclei (entopallium) and unstimulated blank treatment (CK) as controls. We aim to study the neuroregulatory mechanisms of PoAb by investigating the differences of transcriptome level in different groups. A total of 622 differentially expressed genes (DEGs) were obtained from PoAb after comparing the SL stimulating group with the CK control group. GO functional annotation and KEGG pathway enrichment analysis showed that the upregulated 608 DEGs mainly involved energy supply and fluid balance. A total of 345 DEGs were obtained from the PoAb when comparing SL stimulation group and entopallium stimulation group. The upregulated 187 DEGs were mainly involved in cell communication and signal transductions. The study indicated that PoAb may modulate motor behaviour mainly by increasing ATP production and facilitating synaptic transmission, in which genes such as <em>SMAD3</em>, <em>TMED3</em>, <em>GRIA2</em>, <em>HTR1B</em> and <em>SNCG</em> play an important role. We revealed the mechanisms of brain regulation behaviour from gene level, and provided the theoretical foundation for understanding the avian brain.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"224 ","pages":"Article 111322"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025001340","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The basal division of posterior pallial amygdala (PoAb) was one important part of the amygdala in birds. PoAb mainly mediated turning behavior. However, the regulating neuromechanisms of PoAb in motor behavior was not clear yet. In this study, we selected septalis lateralis (SL) as the stimulated nucleus because it was closely associated with PoAb and had clear neuroregulatory functions, and we also used unrelated nuclei (entopallium) and unstimulated blank treatment (CK) as controls. We aim to study the neuroregulatory mechanisms of PoAb by investigating the differences of transcriptome level in different groups. A total of 622 differentially expressed genes (DEGs) were obtained from PoAb after comparing the SL stimulating group with the CK control group. GO functional annotation and KEGG pathway enrichment analysis showed that the upregulated 608 DEGs mainly involved energy supply and fluid balance. A total of 345 DEGs were obtained from the PoAb when comparing SL stimulation group and entopallium stimulation group. The upregulated 187 DEGs were mainly involved in cell communication and signal transductions. The study indicated that PoAb may modulate motor behaviour mainly by increasing ATP production and facilitating synaptic transmission, in which genes such as SMAD3, TMED3, GRIA2, HTR1B and SNCG play an important role. We revealed the mechanisms of brain regulation behaviour from gene level, and provided the theoretical foundation for understanding the avian brain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信