Urooj Mariam , Sarmed Ali , Saba Jamil , Asima Saif , Hifza Arshad , Tahseen Kamal , Shaista Liaqat , Muhammad Jamshed Latif , Shanza Rauf Khan
{"title":"Synthesis, characterization and catalytic applications of CaO-Cu decorated PANI/SA nanocomposites for wastewater treatment","authors":"Urooj Mariam , Sarmed Ali , Saba Jamil , Asima Saif , Hifza Arshad , Tahseen Kamal , Shaista Liaqat , Muhammad Jamshed Latif , Shanza Rauf Khan","doi":"10.1016/j.mssp.2025.109486","DOIUrl":null,"url":null,"abstract":"<div><div>The development of an innovative and efficient catalyst has led to the synthesis of calcium oxide-copper bimetallic nanoparticles (CaO-Cu BNPs) through the chemical reduction of copper nitrate Cu(NO<sub>3</sub>)<sub>2</sub> and calcium oxide (CaO) using sodium borohydride (NaBH<sub>4</sub>) as a reducing agent. Polyaniline (PANI) and sodium alginate (SA) were incorporated via in-situ oxidative polymerization. Characterization techniques including X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Fourier-transform infrared (FTIR) spectroscopy confirmed the structure, morphology and elemental composition identifying Ca, Cu, and O of the BNPs and nanocomposites (NCs). The catalytic performance of the CaO-Cu BNPs and their NCs CaO-Cu/SA, CaO-Cu/PANI, and CaO-Cu/SA/PANI were evaluated for the reduction of methyl red (MR), crystal violet (CV), methyl blue (MB), and eriochrome black T (EBT). CaO-Cu/SA/PANI NC showed superior performance achieving a 97 % reduction of MB in 18 min with an apparent rate constant of 0.2096 min<sup>−1</sup> and a half-life of 3 min. The reduction time for organic dyes achieved by CaO- Cu/SA/PANI NC is 18 min for MB, 20 min for EBT, 30 min for MR, and 16 min for CV, and half-life values for these dyes were 3, 4, 5, and 3 min, respectively. These findings highlight the potential of CaO-Cu/SA/PANI as an effective catalyst for dye reduction in wastewater treatment.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"193 ","pages":"Article 109486"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125002239","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of an innovative and efficient catalyst has led to the synthesis of calcium oxide-copper bimetallic nanoparticles (CaO-Cu BNPs) through the chemical reduction of copper nitrate Cu(NO3)2 and calcium oxide (CaO) using sodium borohydride (NaBH4) as a reducing agent. Polyaniline (PANI) and sodium alginate (SA) were incorporated via in-situ oxidative polymerization. Characterization techniques including X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Fourier-transform infrared (FTIR) spectroscopy confirmed the structure, morphology and elemental composition identifying Ca, Cu, and O of the BNPs and nanocomposites (NCs). The catalytic performance of the CaO-Cu BNPs and their NCs CaO-Cu/SA, CaO-Cu/PANI, and CaO-Cu/SA/PANI were evaluated for the reduction of methyl red (MR), crystal violet (CV), methyl blue (MB), and eriochrome black T (EBT). CaO-Cu/SA/PANI NC showed superior performance achieving a 97 % reduction of MB in 18 min with an apparent rate constant of 0.2096 min−1 and a half-life of 3 min. The reduction time for organic dyes achieved by CaO- Cu/SA/PANI NC is 18 min for MB, 20 min for EBT, 30 min for MR, and 16 min for CV, and half-life values for these dyes were 3, 4, 5, and 3 min, respectively. These findings highlight the potential of CaO-Cu/SA/PANI as an effective catalyst for dye reduction in wastewater treatment.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.