Microbial Fermentation-Derived Dihydroquercetin Derivatives Exhibit Superior Efficacy in Ameliorating Insulin Resistance via JNK/PI3K/AKT Pathway Regulation Compared to Dihydroquercetin

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yong Cheng, Junhao Wu, Yueqing Gao, Beijun Ang, Qiuming Chen, Zhaojun Wang, Maomao Zeng, Fang Qin, Jie Chen, Zhiyong He, Fengfeng Wu
{"title":"Microbial Fermentation-Derived Dihydroquercetin Derivatives Exhibit Superior Efficacy in Ameliorating Insulin Resistance via JNK/PI3K/AKT Pathway Regulation Compared to Dihydroquercetin","authors":"Yong Cheng, Junhao Wu, Yueqing Gao, Beijun Ang, Qiuming Chen, Zhaojun Wang, Maomao Zeng, Fang Qin, Jie Chen, Zhiyong He, Fengfeng Wu","doi":"10.1021/acs.jafc.5c00109","DOIUrl":null,"url":null,"abstract":"Insulin resistance (IR) is a complex metabolic disorder characterized by diminished insulin sensitivity, leading to impaired glucose uptake and a potential progression to hyperglycemia and diabetes. While lifestyle modifications are essential, the limitations of current pharmacological interventions highlight the need for natural products with therapeutic benefits. This study introduces two novel dihydroquercetin (DHQ) derivatives, 8-hydroxy-dihydroquercetin (H-DHQ) and dihydroquercetin-7-<i>O</i>-β-<span>d</span>-(4″-<i>O</i>-methyl)-glucoside (DHQ-MG), developed through microbial fermentation using <i>Beauveria bassiana</i>. Results indicated that H-DHQ and DHQ-MG significantly enhanced the alleviation of IR in a HepG2 cell model compared with DHQ, with no significant differences noticed between DHQ-MG and H-DHQ. Mechanistic analyses revealed that these derivatives effectively reduced inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, thereby activating the JNK/PI3K/AKT signaling pathway to promote glycogen synthesis, suppress gluconeogenesis, and stimulate glucose transport. This research highlights the potential of H-DHQ and DHQ-MG as effective natural alternatives for managing IR, while also providing indirect evidence for the application of microbial fermentation as a strategy to modify natural flavonoids for this purpose.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"7 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c00109","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin resistance (IR) is a complex metabolic disorder characterized by diminished insulin sensitivity, leading to impaired glucose uptake and a potential progression to hyperglycemia and diabetes. While lifestyle modifications are essential, the limitations of current pharmacological interventions highlight the need for natural products with therapeutic benefits. This study introduces two novel dihydroquercetin (DHQ) derivatives, 8-hydroxy-dihydroquercetin (H-DHQ) and dihydroquercetin-7-O-β-d-(4″-O-methyl)-glucoside (DHQ-MG), developed through microbial fermentation using Beauveria bassiana. Results indicated that H-DHQ and DHQ-MG significantly enhanced the alleviation of IR in a HepG2 cell model compared with DHQ, with no significant differences noticed between DHQ-MG and H-DHQ. Mechanistic analyses revealed that these derivatives effectively reduced inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, thereby activating the JNK/PI3K/AKT signaling pathway to promote glycogen synthesis, suppress gluconeogenesis, and stimulate glucose transport. This research highlights the potential of H-DHQ and DHQ-MG as effective natural alternatives for managing IR, while also providing indirect evidence for the application of microbial fermentation as a strategy to modify natural flavonoids for this purpose.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信