Enhancing Thermoelectric Performance of Cd₃P₂ by Alloying with Dirac Material Cd₃As₂

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kunling Peng, Chenjian Fu, Yunzhen Du, Sikang Zheng, Meng Tian, Pengfei Gao, Jianjun Ying, Wenbin Yi, Xu Lu, Sheng Zhang, Guoyu Wang, Xiaoyuan Zhou
{"title":"Enhancing Thermoelectric Performance of Cd₃P₂ by Alloying with Dirac Material Cd₃As₂","authors":"Kunling Peng, Chenjian Fu, Yunzhen Du, Sikang Zheng, Meng Tian, Pengfei Gao, Jianjun Ying, Wenbin Yi, Xu Lu, Sheng Zhang, Guoyu Wang, Xiaoyuan Zhou","doi":"10.1002/aelm.202500034","DOIUrl":null,"url":null,"abstract":"This study systematically explores the electrical and thermal properties of Cd₃P₂ by alloying it with the Dirac material Cd₃As₂, employing a combined experimental and theoretical approach. The findings demonstrate three distinct characteristics of this solid solution system: i) The continuous solid solution formation between Cd₃P₂ and Cd₃As₂ enables the tuning of the band structure. ii) Increasing As content leads to a reduction in effective mass, decreased deformation potential, and a substantial enhancement in carrier mobility. iii) The system exhibits phosphorus vacancy generation, which creates donor levels within the band gap and consequently impacts thermoelectric performance. Specifically, an ultrahigh mobility exceeding 7 × 10<sup>3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> is achieved in Cd₃PAs. This substantial improvement in mobility across the entire temperature range resulted in a twofold increase in the power factor and a marked enhancement in thermoelectric performance, particularly in the low-temperature region. These results provide foundational insights into the thermoelectric behavior governed by the interplay between the semiconductor Cd₃P₂ and the Dirac material Cd₃As₂, establishing a framework for further research and performance optimization of this solid solution system.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"152 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500034","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically explores the electrical and thermal properties of Cd₃P₂ by alloying it with the Dirac material Cd₃As₂, employing a combined experimental and theoretical approach. The findings demonstrate three distinct characteristics of this solid solution system: i) The continuous solid solution formation between Cd₃P₂ and Cd₃As₂ enables the tuning of the band structure. ii) Increasing As content leads to a reduction in effective mass, decreased deformation potential, and a substantial enhancement in carrier mobility. iii) The system exhibits phosphorus vacancy generation, which creates donor levels within the band gap and consequently impacts thermoelectric performance. Specifically, an ultrahigh mobility exceeding 7 × 103 cm2 V−1 s−1 is achieved in Cd₃PAs. This substantial improvement in mobility across the entire temperature range resulted in a twofold increase in the power factor and a marked enhancement in thermoelectric performance, particularly in the low-temperature region. These results provide foundational insights into the thermoelectric behavior governed by the interplay between the semiconductor Cd₃P₂ and the Dirac material Cd₃As₂, establishing a framework for further research and performance optimization of this solid solution system.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信