Excess Fructose Intake Activates Hyperinsulinemia and Mitogenic MAPK Pathways in Association With Cellular Stress, Inflammation, and Apoptosis in the Pancreas of Rats

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Ceren Guney, Mehmet Eray Alcigir, Fatma Akar
{"title":"Excess Fructose Intake Activates Hyperinsulinemia and Mitogenic MAPK Pathways in Association With Cellular Stress, Inflammation, and Apoptosis in the Pancreas of Rats","authors":"Ceren Guney, Mehmet Eray Alcigir, Fatma Akar","doi":"10.1002/mnfr.70048","DOIUrl":null,"url":null,"abstract":"The increase in sugar consumption has been associated with current metabolic disease epidemics. This study aimed to investigate the pancreatic molecular mechanisms involved in cellular stress, inflammation, mitogenesis, and apoptosis in metabolic disease induced by high-fructose diet. Here, we used biochemical, histopathological, Western blot, and immunohistochemistry methods to determine the metabolic and pancreatic alterations in male <i>Wistar</i> rats fed 20% fructose in drinking water for 15 weeks. High-fructose consumption in rats increased the immunopositivity and protein expression of glucose transporter 2 (GLUT2) and insulin in the pancreatic tissue, in association with abdominal adiposity, hyperglycemia, and hypertriglyceridemia. The expressions of cellular stress markers, glucose-regulated protein-78 (GRP78) and PTEN-induced putative kinase 1 (PINK1), were increased in the pancreas. The levels of interleukin (IL)-6, nuclear factor kappa B (NFκB), tumor necrosis factor α (TNFα), and IL-1β and components of the Nod-like receptor protein 3 (NLRP3) inflammasome were elevated. Excess fructose intake stimulated the activation of mitogenic extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK)1 as well as the apoptotic p53 and Fas pathways in the pancreas of rats. There was also an increase in caspase-8 and caspase-3 cleavage. Our findings revealed that dietary high-fructose in the pancreas causes hyperinsulinemia due to the upregulation of GLUT2 together with cellular stress and inflammatory markers, thereby stimulates mitogenic mitogen-activated protein kinase (MAPK) and apoptosis pathways, resulting in a complex pathological situation.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"30 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70048","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in sugar consumption has been associated with current metabolic disease epidemics. This study aimed to investigate the pancreatic molecular mechanisms involved in cellular stress, inflammation, mitogenesis, and apoptosis in metabolic disease induced by high-fructose diet. Here, we used biochemical, histopathological, Western blot, and immunohistochemistry methods to determine the metabolic and pancreatic alterations in male Wistar rats fed 20% fructose in drinking water for 15 weeks. High-fructose consumption in rats increased the immunopositivity and protein expression of glucose transporter 2 (GLUT2) and insulin in the pancreatic tissue, in association with abdominal adiposity, hyperglycemia, and hypertriglyceridemia. The expressions of cellular stress markers, glucose-regulated protein-78 (GRP78) and PTEN-induced putative kinase 1 (PINK1), were increased in the pancreas. The levels of interleukin (IL)-6, nuclear factor kappa B (NFκB), tumor necrosis factor α (TNFα), and IL-1β and components of the Nod-like receptor protein 3 (NLRP3) inflammasome were elevated. Excess fructose intake stimulated the activation of mitogenic extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK)1 as well as the apoptotic p53 and Fas pathways in the pancreas of rats. There was also an increase in caspase-8 and caspase-3 cleavage. Our findings revealed that dietary high-fructose in the pancreas causes hyperinsulinemia due to the upregulation of GLUT2 together with cellular stress and inflammatory markers, thereby stimulates mitogenic mitogen-activated protein kinase (MAPK) and apoptosis pathways, resulting in a complex pathological situation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信