Distinct and content-specific neural representations of self- and other-produced actions in joint piano performance.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Frontiers in Human Neuroscience Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.3389/fnhum.2025.1543131
Natalie Kohler, Anna M Czepiel, Örjan de Manzano, Giacomo Novembre, Peter E Keller, Arno Villringer, Daniela Sammler
{"title":"Distinct and content-specific neural representations of self- and other-produced actions in joint piano performance.","authors":"Natalie Kohler, Anna M Czepiel, Örjan de Manzano, Giacomo Novembre, Peter E Keller, Arno Villringer, Daniela Sammler","doi":"10.3389/fnhum.2025.1543131","DOIUrl":null,"url":null,"abstract":"<p><p>During ensemble performance, musicians predict their own and their partners' action outcomes to smoothly coordinate in real time. The neural auditory-motor system is thought to contribute to these predictions by running internal forward models that simulate self- and other-produced actions slightly ahead of time. What remains elusive, however, is whether and how own and partner actions can be represented <i>simultaneously</i> and <i>distinctively</i> in the sensorimotor system, and whether these representations are <i>content-specific</i>. Here, we applied multivariate pattern analysis (MVPA) to functional magnetic resonance imaging (fMRI) data of duetting pianists to dissociate the neural representation of self- and other-produced actions during synchronous joint music performance. Expert pianists played familiar right-hand melodies in a 3 T MR-scanner, in duet with a partner who played the corresponding left-hand basslines in an adjacent room. In half of the pieces, pianists were motorically familiar (or unfamiliar) with their partner's left-hand part. MVPA was applied in primary motor and premotor cortices (M1, PMC), cerebellum, and planum temporale of both hemispheres to classify which piece was performed. Classification accuracies were higher in left than right M1, reflecting the content-specific neural representation of self-produced right-hand melodies. Notably, PMC showed the opposite lateralization, with higher accuracies in the right than left hemisphere, likely reflecting the content-specific neural representation of other-produced left-hand basslines. Direct physiological support for the representational alignment of partners' M1 and PMC should be gained in future studies using novel tools like interbrain representational similarity analyses. Surprisingly, motor representations in PMC were similarly precise irrespective of familiarity with the partner's part. This suggests that expert pianists may generalize contents of familiar actions to unfamiliar pieces with similar musical structure, based on the auditory perception of the partner's part. Overall, these findings support the notion of parallel, distinct, and content-specific self and other internal forward models that are integrated within cortico-cerebellar auditory-motor networks to support smooth coordination in musical ensemble performance and possibly other forms of social interaction.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1543131"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1543131","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During ensemble performance, musicians predict their own and their partners' action outcomes to smoothly coordinate in real time. The neural auditory-motor system is thought to contribute to these predictions by running internal forward models that simulate self- and other-produced actions slightly ahead of time. What remains elusive, however, is whether and how own and partner actions can be represented simultaneously and distinctively in the sensorimotor system, and whether these representations are content-specific. Here, we applied multivariate pattern analysis (MVPA) to functional magnetic resonance imaging (fMRI) data of duetting pianists to dissociate the neural representation of self- and other-produced actions during synchronous joint music performance. Expert pianists played familiar right-hand melodies in a 3 T MR-scanner, in duet with a partner who played the corresponding left-hand basslines in an adjacent room. In half of the pieces, pianists were motorically familiar (or unfamiliar) with their partner's left-hand part. MVPA was applied in primary motor and premotor cortices (M1, PMC), cerebellum, and planum temporale of both hemispheres to classify which piece was performed. Classification accuracies were higher in left than right M1, reflecting the content-specific neural representation of self-produced right-hand melodies. Notably, PMC showed the opposite lateralization, with higher accuracies in the right than left hemisphere, likely reflecting the content-specific neural representation of other-produced left-hand basslines. Direct physiological support for the representational alignment of partners' M1 and PMC should be gained in future studies using novel tools like interbrain representational similarity analyses. Surprisingly, motor representations in PMC were similarly precise irrespective of familiarity with the partner's part. This suggests that expert pianists may generalize contents of familiar actions to unfamiliar pieces with similar musical structure, based on the auditory perception of the partner's part. Overall, these findings support the notion of parallel, distinct, and content-specific self and other internal forward models that are integrated within cortico-cerebellar auditory-motor networks to support smooth coordination in musical ensemble performance and possibly other forms of social interaction.

钢琴联合演奏中自我和他人产生动作的独特和内容特定的神经表征。
在合奏过程中,音乐家预测自己和搭档的动作结果,以实现实时的协调。人们认为,神经听觉运动系统通过运行内部正向模型,略微提前模拟自我和他人产生的动作,从而有助于这些预测。然而,仍然难以捉摸的是,在感觉运动系统中,自己和同伴的行为是否以及如何能够同时和独特地表征,以及这些表征是否具有内容特异性。在此,我们应用多元模式分析(MVPA)对二重唱钢琴家的功能磁共振成像(fMRI)数据进行分离,以分离同步联合音乐表演中自我和他人产生的动作的神经表征。钢琴专家在3 T核磁共振扫描仪上演奏熟悉的右手旋律,与隔壁房间里弹奏左手贝斯线的搭档二重唱。在其中一半的作品中,钢琴家在动作上熟悉(或不熟悉)他们搭档的左手部分。MVPA应用于初级运动和前运动皮质(M1, PMC),小脑和双脑颞平面来区分哪一块被执行。左侧M1的分类准确率高于右侧M1,这反映了自我产生的右侧旋律的特定内容神经表征。值得注意的是,PMC表现出相反的偏侧化,右半球的准确性高于左半球,可能反映了其他产生的左手低音的特定内容的神经表征。在未来的研究中,应该使用脑间表征相似性分析等新工具来获得伴侣M1和PMC表征一致性的直接生理支持。令人惊讶的是,PMC中的运动表征同样精确,与对同伴部分的熟悉程度无关。这表明,专业钢琴家可能会根据搭档部分的听觉感知,将熟悉动作的内容概括为具有相似音乐结构的陌生作品。总的来说,这些发现支持平行的、独特的、内容特定的自我和其他内部正向模型的概念,这些模型集成在皮质-小脑听觉-运动网络中,以支持音乐合奏表演和其他形式的社会互动的顺利协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信