Alexander F Perhal, Patrik F Schwarz, Thomas Linder, Marko D Mihovilovic, Michael Schnürch, Verena M Dirsch
{"title":"Identification and Characterization of a Leoligin-Inspired Synthetic Lignan as a TGR5 Agonist.","authors":"Alexander F Perhal, Patrik F Schwarz, Thomas Linder, Marko D Mihovilovic, Michael Schnürch, Verena M Dirsch","doi":"10.1021/acs.jnatprod.5c00059","DOIUrl":null,"url":null,"abstract":"<p><p>The G-protein coupled bile acid receptor 1 (GPBAR1 or TGR5) is the major cell membrane receptor for bile acids regulating metabolic and immunological functions. Its pharmacological modulation has been shown to alleviate inflammatory diseases, such as type 2 diabetes and atherosclerosis. The naturally occurring lignan leoligin and structural analogues have shown anti-inflammatory effects in vitro. However, the underlying molecular targets are still unknown. In this study, we identify the natural product-inspired synthetic structural analogue of leoligin, LT-188A (<b>1</b>), as a novel nonsteroidal TGR5 agonist. LT-188A (<b>1</b>) induced cyclic adenosine monophosphate (cAMP) accumulation and cAMP response element (CRE)-dependent luciferase activity in a concentration- and TGR5-dependent manner. Consistently, LT-188A (<b>1</b>) inhibited activation of the pro-inflammatory transcription factor nuclear factor κB (NFκB) only in TGR5 expressing cells. In macrophages, LT-188A (<b>1</b>) reduced the expression levels of pro-inflammatory cytokines and the production of nitric oxide (NO) as determined by qPCR and the Griess assay, respectively. We showed that LT-188A (<b>1</b>) decreased the levels of production of these inflammatory mediators in macrophages. In conclusion, we demonstrate that LT-188A (<b>1</b>) is a novel natural product-inspired TGR5 agonist with promising anti-inflammatory in vitro bioactivity in relevant cellular assays representing a promising tool compound with potential for further development.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.5c00059","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The G-protein coupled bile acid receptor 1 (GPBAR1 or TGR5) is the major cell membrane receptor for bile acids regulating metabolic and immunological functions. Its pharmacological modulation has been shown to alleviate inflammatory diseases, such as type 2 diabetes and atherosclerosis. The naturally occurring lignan leoligin and structural analogues have shown anti-inflammatory effects in vitro. However, the underlying molecular targets are still unknown. In this study, we identify the natural product-inspired synthetic structural analogue of leoligin, LT-188A (1), as a novel nonsteroidal TGR5 agonist. LT-188A (1) induced cyclic adenosine monophosphate (cAMP) accumulation and cAMP response element (CRE)-dependent luciferase activity in a concentration- and TGR5-dependent manner. Consistently, LT-188A (1) inhibited activation of the pro-inflammatory transcription factor nuclear factor κB (NFκB) only in TGR5 expressing cells. In macrophages, LT-188A (1) reduced the expression levels of pro-inflammatory cytokines and the production of nitric oxide (NO) as determined by qPCR and the Griess assay, respectively. We showed that LT-188A (1) decreased the levels of production of these inflammatory mediators in macrophages. In conclusion, we demonstrate that LT-188A (1) is a novel natural product-inspired TGR5 agonist with promising anti-inflammatory in vitro bioactivity in relevant cellular assays representing a promising tool compound with potential for further development.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.