Very high frequency (∼100 MHz) plasma enhanced atomic layer deposition high-κ hafnium zirconium oxide capacitors near morphotropic phase boundary with low current density & high-κ for DRAM technology†
IF 5.7 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ketong Yang, Hunbeom Shin, Seungyeob Kim, Taeseung Jung and Sanghun Jeon
{"title":"Very high frequency (∼100 MHz) plasma enhanced atomic layer deposition high-κ hafnium zirconium oxide capacitors near morphotropic phase boundary with low current density & high-κ for DRAM technology†","authors":"Ketong Yang, Hunbeom Shin, Seungyeob Kim, Taeseung Jung and Sanghun Jeon","doi":"10.1039/D4TC04979A","DOIUrl":null,"url":null,"abstract":"<p >Hafnium dioxide-based ferroelectric (FE) films are emerging as pivotal materials for advanced memory storage and neuromorphic computing, particularly in ultra-scaled dynamic random-access memory (DRAM) technologies. To meet the stringent DRAM performance requirements—dielectric constants (<em>κ</em>) exceeding 60 and leakage current densities below 10<small><sup>−6</sup></small> A cm<small><sup>−2</sup></small> at 0.8 V—hafnium zirconium oxide (HZO) films engineered near the morphotropic phase boundary (MPB) are leading candidates. These films offer a favorable balance of high dielectric properties and reduced equivalent oxide thickness while managing leakage. However, film thinning often escalates leakage currents, presenting a significant design challenge. Moreover, interfacial damage induced by conventional deposition techniques can undermine dielectric stability. Here, we present a novel approach utilizing very high frequency (VHF, 100 MHz) plasma-enhanced atomic layer deposition (PE-ALD) to fabricate 4.5 nm HZO films with superior crystalline quality and minimized oxygen vacancies. This method yields an impressive dielectric constant of 64.47, markedly surpassing radio frequency-deposited counterparts. Notably, at elevated temperatures up to 389 K, the dielectric constant reaches 69.9, approaching the theoretical tetragonal-phase limit. Our results demonstrate the transformative potential of VHF PE-ALD in optimizing HZO film properties, establishing a compelling pathway for future high-performance DRAM applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6702-6707"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d4tc04979a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04979a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hafnium dioxide-based ferroelectric (FE) films are emerging as pivotal materials for advanced memory storage and neuromorphic computing, particularly in ultra-scaled dynamic random-access memory (DRAM) technologies. To meet the stringent DRAM performance requirements—dielectric constants (κ) exceeding 60 and leakage current densities below 10−6 A cm−2 at 0.8 V—hafnium zirconium oxide (HZO) films engineered near the morphotropic phase boundary (MPB) are leading candidates. These films offer a favorable balance of high dielectric properties and reduced equivalent oxide thickness while managing leakage. However, film thinning often escalates leakage currents, presenting a significant design challenge. Moreover, interfacial damage induced by conventional deposition techniques can undermine dielectric stability. Here, we present a novel approach utilizing very high frequency (VHF, 100 MHz) plasma-enhanced atomic layer deposition (PE-ALD) to fabricate 4.5 nm HZO films with superior crystalline quality and minimized oxygen vacancies. This method yields an impressive dielectric constant of 64.47, markedly surpassing radio frequency-deposited counterparts. Notably, at elevated temperatures up to 389 K, the dielectric constant reaches 69.9, approaching the theoretical tetragonal-phase limit. Our results demonstrate the transformative potential of VHF PE-ALD in optimizing HZO film properties, establishing a compelling pathway for future high-performance DRAM applications.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors