Low-bandgap oligothiophene-naphthalimide oligomeric semiconductors for thermoelectric applications†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matías J. Alonso-Navarro, Osnat Zapata-Arteaga, Sergi Riera-Galindo, Jiali Guo, Aleksandr-Peredeventsv, Edgar Gutiérrez-Fernández, Juan Sebastián Reparaz, Mar Ramos, Christian Müller, Jaime Martín, Marta Mas-Torrent, José L. Segura and Mariano Campoy-Quiles
{"title":"Low-bandgap oligothiophene-naphthalimide oligomeric semiconductors for thermoelectric applications†","authors":"Matías J. Alonso-Navarro, Osnat Zapata-Arteaga, Sergi Riera-Galindo, Jiali Guo, Aleksandr-Peredeventsv, Edgar Gutiérrez-Fernández, Juan Sebastián Reparaz, Mar Ramos, Christian Müller, Jaime Martín, Marta Mas-Torrent, José L. Segura and Mariano Campoy-Quiles","doi":"10.1039/D4TC05383D","DOIUrl":null,"url":null,"abstract":"<p >State-of-the-art p-type organic conjugated polymers are mostly thiophene-based semiconductors. Still, novel chemical design and a fresh perspective on different polymer backbones could pave the way for new high-performing materials and a deep understanding of donor–acceptor conjugated assemblies. Herein we designed and synthesized two novel electroactive oligomeric materials based on a donor terthiophene unit endowed with a strong electron-withdrawing naphthalimide unit. This molecular assembly has been polymerized using a palladium cross-coupling reaction with two different linkers, 1,1,1,2,2,2-hexabutyldistannane and (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-<em>b</em>:4,5-<em>b</em>′]dithiophene-2,6-diyl)bis(trimethylstannane), to obtain the target polymers <strong>NIP3T-poly</strong> and <strong>NIP3T-BDT-poly</strong>, respectively. Both polymers exhibited an extended absorption up to 1000 nm and higher hole field-effect mobilities of up to 1.8 × 10<small><sup>−3</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>, in comparison to the molecular assembly <strong>NIP3T</strong>, and precisely tuned energy levels that make them compatible with common p-type dopants like 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F<small><sub>4</sub></small>TCNQ). After optimizing the doping level, we obtained a thermoelectric figure of merit up to <em>zT</em> = 0.02 for <strong>NIP3T-BDT-poly</strong>, comparable with benchmark F<small><sub>4</sub></small>TCNQ-vapor doped polythiophenes.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6922-6932"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d4tc05383d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05383d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art p-type organic conjugated polymers are mostly thiophene-based semiconductors. Still, novel chemical design and a fresh perspective on different polymer backbones could pave the way for new high-performing materials and a deep understanding of donor–acceptor conjugated assemblies. Herein we designed and synthesized two novel electroactive oligomeric materials based on a donor terthiophene unit endowed with a strong electron-withdrawing naphthalimide unit. This molecular assembly has been polymerized using a palladium cross-coupling reaction with two different linkers, 1,1,1,2,2,2-hexabutyldistannane and (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(trimethylstannane), to obtain the target polymers NIP3T-poly and NIP3T-BDT-poly, respectively. Both polymers exhibited an extended absorption up to 1000 nm and higher hole field-effect mobilities of up to 1.8 × 10−3 cm2 V−1 s−1, in comparison to the molecular assembly NIP3T, and precisely tuned energy levels that make them compatible with common p-type dopants like 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). After optimizing the doping level, we obtained a thermoelectric figure of merit up to zT = 0.02 for NIP3T-BDT-poly, comparable with benchmark F4TCNQ-vapor doped polythiophenes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信