Seong Cheol Jang, Gunoh Lee, Ilhoon Park, Byeongil Noh, Ji-Min Park, Jaewon Lee, Kyung Jin Lee and Hyun-Suk Kim
{"title":"Tunable dielectric properties of a parylene dielectric layer through surface-modulation by click chemistry†","authors":"Seong Cheol Jang, Gunoh Lee, Ilhoon Park, Byeongil Noh, Ji-Min Park, Jaewon Lee, Kyung Jin Lee and Hyun-Suk Kim","doi":"10.1039/D4TC04474F","DOIUrl":null,"url":null,"abstract":"<p >A dielectric serves as a separator between the semiconductor and the electrode in thin-film transistors (TFTs), playing a crucial role in attracting carriers through polarization by an electric field. In this study, copper-catalyzed azide/alkyne click reactions were adopted to modulate the dielectric and electrical properties of a polymer gate dielectric poly[(ethynyl-<em>p</em>-xylylene)-<em>co</em>-(<em>p</em>-xylylene)] (ethynyl parylene). A custom-synthesized ethynyl parylene dielectric layer is fabricated using chemical vapor polymerization, which yields smooth conformal films. Four types of azide materials – benzyl azide, aminopropyl azide, trimethylsilyl azide, and biotin-PEG3-azide – are utilized as dielectric constant modulators <em>via</em> click reactions. With only approximately 1% surface modulation, the dielectric constant of ethynyl parylene is nearly double that of pristine ethynyl parylene, whereas the leakage current density remains unchanged. Finally, IGZO TFTs are successfully fabricated using surface-modulated ethynyl parylene as the gate dielectric. Therefore, the click reaction of a polymer gate dielectric is an effective method to tune its properties while maintaining the interface properties of the front channel.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6614-6623"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04474f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A dielectric serves as a separator between the semiconductor and the electrode in thin-film transistors (TFTs), playing a crucial role in attracting carriers through polarization by an electric field. In this study, copper-catalyzed azide/alkyne click reactions were adopted to modulate the dielectric and electrical properties of a polymer gate dielectric poly[(ethynyl-p-xylylene)-co-(p-xylylene)] (ethynyl parylene). A custom-synthesized ethynyl parylene dielectric layer is fabricated using chemical vapor polymerization, which yields smooth conformal films. Four types of azide materials – benzyl azide, aminopropyl azide, trimethylsilyl azide, and biotin-PEG3-azide – are utilized as dielectric constant modulators via click reactions. With only approximately 1% surface modulation, the dielectric constant of ethynyl parylene is nearly double that of pristine ethynyl parylene, whereas the leakage current density remains unchanged. Finally, IGZO TFTs are successfully fabricated using surface-modulated ethynyl parylene as the gate dielectric. Therefore, the click reaction of a polymer gate dielectric is an effective method to tune its properties while maintaining the interface properties of the front channel.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors