Hollowing integration engineering to construct MOF-derived carbon composites for lightweight and efficient microwave absorption materials†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhe Zhang, Jiewu Cui, Dongbo Yu, Pengjie Zhang, Wei Sun, Yong Zhang, Song Ma, Xiaohui Liang and Yucheng Wu
{"title":"Hollowing integration engineering to construct MOF-derived carbon composites for lightweight and efficient microwave absorption materials†","authors":"Zhe Zhang, Jiewu Cui, Dongbo Yu, Pengjie Zhang, Wei Sun, Yong Zhang, Song Ma, Xiaohui Liang and Yucheng Wu","doi":"10.1039/D5TC00412H","DOIUrl":null,"url":null,"abstract":"<p >The rational and precise preparation of metal–organic framework (MOF)-derived carbon-based absorbers with a fine hollow structure and the tuning of their electromagnetic properties at low loading for synergistic optimization of impedance matching and high attenuation capacity for efficient utilization have become important challenges for lightweight electromagnetic wave absorption (EMWA). Herein, a hollow particle-assembled one-dimensional (1D) nanotube carbon matrix composite loaded with dispersed Co nanoparticles is fabricated by a two-step hollowing strategy of solvent-assisted ligand exchange (SALE) and a protected etching process, combined with a subsequently optimized pyrolysis. This novel hollow structure promotes multiple reflections and scattering of incident electromagnetic waves, optimizes impedance matching, and also greatly enhances the synergistic effect of multiple loss mechanisms, remarkably improving the electromagnetic characteristics. The results indicate that Co-ZIF-HPT-700 achieves a minimum reflection loss (RL<small><sub>min</sub></small>) of −76.93 dB at 8.96 GHz with a fill rate of only 10 wt%. At the matched thicknesses of 2.12 and 2.96 mm, it realizes full-band absorption in Ku and X bands, respectively. This work provides novel ideas for the design of a new generation of ultra-lightweight EMWA materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6556-6568"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00412h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational and precise preparation of metal–organic framework (MOF)-derived carbon-based absorbers with a fine hollow structure and the tuning of their electromagnetic properties at low loading for synergistic optimization of impedance matching and high attenuation capacity for efficient utilization have become important challenges for lightweight electromagnetic wave absorption (EMWA). Herein, a hollow particle-assembled one-dimensional (1D) nanotube carbon matrix composite loaded with dispersed Co nanoparticles is fabricated by a two-step hollowing strategy of solvent-assisted ligand exchange (SALE) and a protected etching process, combined with a subsequently optimized pyrolysis. This novel hollow structure promotes multiple reflections and scattering of incident electromagnetic waves, optimizes impedance matching, and also greatly enhances the synergistic effect of multiple loss mechanisms, remarkably improving the electromagnetic characteristics. The results indicate that Co-ZIF-HPT-700 achieves a minimum reflection loss (RLmin) of −76.93 dB at 8.96 GHz with a fill rate of only 10 wt%. At the matched thicknesses of 2.12 and 2.96 mm, it realizes full-band absorption in Ku and X bands, respectively. This work provides novel ideas for the design of a new generation of ultra-lightweight EMWA materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信