{"title":"Flexible CNF/CB-based humidity sensors with optimized sensitivity and performance","authors":"Cláudia Buga and Júlio Viana","doi":"10.1039/D5TC00220F","DOIUrl":null,"url":null,"abstract":"<p >Humidity monitoring is ubiquitously used in industries like robotics, human–machine interfaces, and electronic skins, where humidity sensors ensure device protection and data-gathering accuracy. Therefore, this work focuses on developing sustainable, flexible, and highly sensitive cellulose-based humidity sensors. To achieve this goal, a Taguchi design of experiments was suggested to optimize four key ink formulation parameters: carbon black (CB) fillers, cellulose nanofibers (CNF), polyvinyl pyrrolidone (PVP) binders, and glycerol plasticizers. The resulting formulations were subjected to material, electrical resistance, adhesion, water contact angle, and hygroresistive characterization. The results detail how the factors of interest influence the electrical response of the sensors, their sensitivity, and ink adhesion to the substrate. Moreover, increasing the CNF, glycerol, and PVP while reducing CB enhances sensitivity and ink performance. Optimized sensors demonstrated high responsiveness between 20% and 90% relative humidity, with an exponential growth rate of 9.6–10.0% RH<small><sup>−1</sup></small>. The optimized sensors were also assessed regarding their repeatability across 10 cycles, stability to bending, and insensitivity to temperature variation. These findings highlight the role of formulation interactions in sensor performance and demonstrate the potential of eco-friendly and highly sensitive humidity sensors for next-generation flexible electronics.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6508-6526"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc00220f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Humidity monitoring is ubiquitously used in industries like robotics, human–machine interfaces, and electronic skins, where humidity sensors ensure device protection and data-gathering accuracy. Therefore, this work focuses on developing sustainable, flexible, and highly sensitive cellulose-based humidity sensors. To achieve this goal, a Taguchi design of experiments was suggested to optimize four key ink formulation parameters: carbon black (CB) fillers, cellulose nanofibers (CNF), polyvinyl pyrrolidone (PVP) binders, and glycerol plasticizers. The resulting formulations were subjected to material, electrical resistance, adhesion, water contact angle, and hygroresistive characterization. The results detail how the factors of interest influence the electrical response of the sensors, their sensitivity, and ink adhesion to the substrate. Moreover, increasing the CNF, glycerol, and PVP while reducing CB enhances sensitivity and ink performance. Optimized sensors demonstrated high responsiveness between 20% and 90% relative humidity, with an exponential growth rate of 9.6–10.0% RH−1. The optimized sensors were also assessed regarding their repeatability across 10 cycles, stability to bending, and insensitivity to temperature variation. These findings highlight the role of formulation interactions in sensor performance and demonstrate the potential of eco-friendly and highly sensitive humidity sensors for next-generation flexible electronics.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors