Polariton emission properties of an organic dye-doped polymer microcavity†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lulu Xue, Ziyang Chen, Yatong Zhang, Xiaoya Yan, Liang Zhao, Pengxue Jia, Bo Gao and Hongyan Shi
{"title":"Polariton emission properties of an organic dye-doped polymer microcavity†","authors":"Lulu Xue, Ziyang Chen, Yatong Zhang, Xiaoya Yan, Liang Zhao, Pengxue Jia, Bo Gao and Hongyan Shi","doi":"10.1039/D4TC04791E","DOIUrl":null,"url":null,"abstract":"<p >Although organic polariton lasing has been recently demonstrated in dye-doped polymer microcavities, they only utilize the excitons and photons forming new emissive polaritonic states, often ignoring the strong and stable excimer emission that arises from dye aggregation at specific concentrations. The <em>N</em>,<em>N</em>′-bis(2-phenylethyl)-3,4,9,10-perylene dicarboximide (EP-PDI) dye-doped polymer showed stable and strong excimer emission at a specific concentration, with high PLQYs. In this study, we fabricated EP-PDI dye-doped polymer cavities with controlled cavity lengths (800 and 850 nm) and investigated the polariton emission properties. Within the cavities, we observe two types of cavity polariton emissions: the first is dominated by strong exciton–photon coupling with a Rabi splitting of 0.16 eV. Another polariton emission originates from the excimer radiative pumps. The radiatively pumping excimer populates the lower polariton state, with the decay profile reflecting the density of states. The excimer relaxation in the microcavity was faster than that of the pure film. The cavity polariton emission derived from the excimer state is sensitive to the cavity environment. The cavity length significantly affects the microcavity polariton emission wavelength and lifetime. Our findings highlight the importance of the microcavity length control in designing organic polaritonic devices, where excimer radiative pumps and polariton relaxation pathways critically influence performance.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6772-6778"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04791e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although organic polariton lasing has been recently demonstrated in dye-doped polymer microcavities, they only utilize the excitons and photons forming new emissive polaritonic states, often ignoring the strong and stable excimer emission that arises from dye aggregation at specific concentrations. The N,N′-bis(2-phenylethyl)-3,4,9,10-perylene dicarboximide (EP-PDI) dye-doped polymer showed stable and strong excimer emission at a specific concentration, with high PLQYs. In this study, we fabricated EP-PDI dye-doped polymer cavities with controlled cavity lengths (800 and 850 nm) and investigated the polariton emission properties. Within the cavities, we observe two types of cavity polariton emissions: the first is dominated by strong exciton–photon coupling with a Rabi splitting of 0.16 eV. Another polariton emission originates from the excimer radiative pumps. The radiatively pumping excimer populates the lower polariton state, with the decay profile reflecting the density of states. The excimer relaxation in the microcavity was faster than that of the pure film. The cavity polariton emission derived from the excimer state is sensitive to the cavity environment. The cavity length significantly affects the microcavity polariton emission wavelength and lifetime. Our findings highlight the importance of the microcavity length control in designing organic polaritonic devices, where excimer radiative pumps and polariton relaxation pathways critically influence performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信