Conductive network enhanced self-assembled diphasic Prussian blue analogs for aqueous zinc-ion batteries†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bingbing Hu, Dongshan Li, Meixin Li, Jiayu Jiang, Ye Zou, Yu Deng, Zideng Zhou, Hong Pu, Guangqiang Ma and Zhi Li
{"title":"Conductive network enhanced self-assembled diphasic Prussian blue analogs for aqueous zinc-ion batteries†","authors":"Bingbing Hu, Dongshan Li, Meixin Li, Jiayu Jiang, Ye Zou, Yu Deng, Zideng Zhou, Hong Pu, Guangqiang Ma and Zhi Li","doi":"10.1039/D4TC05159A","DOIUrl":null,"url":null,"abstract":"<p >Zinc hexacyanoate (ZnHCF), one of the Prussian blue analogs (PBAs), is a promising cathode material for rechargeable aqueous batteries due to its easy synthesis and open framework. However, the low-capacity problem limits its further development. In this work, a low-cost and simple hydrothermal method is used to grow a diphasic Prussian blue composite material (ZnVHCF) on reduced graphene oxide (rGO), aiming to improve the specific capacity and conductivity of the electrode material by introducing vanadium-based Prussian blue and rGO conductive networks. Meanwhile, the electrolyte additive is utilized as a strategy to suppress the vanadium dissolution of cathode materials. Based on the synergistic effect of multiple strategies, the reduced graphene oxide modified vanadium–zinc diphasic Prussian blue (ZnVHCF@rGO) composite material exhibits excellent zinc storage performance. It shows a higher specific capacity of 152.3 mA h g<small><sup>−1</sup></small> at a current density of 0.1 A g<small><sup>−1</sup></small>. In addition, the VO<small><sup>2+</sup></small> sol–gel electrolyte additive provides additional capacity due to the electrochemical activity of V and delays material dissolution based on the principle of solvation equilibrium. The capacity reaches 84.1 mA h g<small><sup>−1</sup></small> at a current of 5 A g<small><sup>−1</sup></small>, which is an improvement of 26.1%. And the cycling stability is improved by 25.2% after 300 cycles. This work provides new ideas for the design of high-performance PBA cathodes for AZIBs.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 13","pages":" 6736-6744"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05159a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc hexacyanoate (ZnHCF), one of the Prussian blue analogs (PBAs), is a promising cathode material for rechargeable aqueous batteries due to its easy synthesis and open framework. However, the low-capacity problem limits its further development. In this work, a low-cost and simple hydrothermal method is used to grow a diphasic Prussian blue composite material (ZnVHCF) on reduced graphene oxide (rGO), aiming to improve the specific capacity and conductivity of the electrode material by introducing vanadium-based Prussian blue and rGO conductive networks. Meanwhile, the electrolyte additive is utilized as a strategy to suppress the vanadium dissolution of cathode materials. Based on the synergistic effect of multiple strategies, the reduced graphene oxide modified vanadium–zinc diphasic Prussian blue (ZnVHCF@rGO) composite material exhibits excellent zinc storage performance. It shows a higher specific capacity of 152.3 mA h g−1 at a current density of 0.1 A g−1. In addition, the VO2+ sol–gel electrolyte additive provides additional capacity due to the electrochemical activity of V and delays material dissolution based on the principle of solvation equilibrium. The capacity reaches 84.1 mA h g−1 at a current of 5 A g−1, which is an improvement of 26.1%. And the cycling stability is improved by 25.2% after 300 cycles. This work provides new ideas for the design of high-performance PBA cathodes for AZIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信