Unsupervised domain adaptation for HVAC fault diagnosis using contrastive adaptation network

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Naghmeh Ghalamsiah , Jin Wen , K.Selcuk Candan , Teresa Wu , Zheng O’Neill , Asra Aghaei
{"title":"Unsupervised domain adaptation for HVAC fault diagnosis using contrastive adaptation network","authors":"Naghmeh Ghalamsiah ,&nbsp;Jin Wen ,&nbsp;K.Selcuk Candan ,&nbsp;Teresa Wu ,&nbsp;Zheng O’Neill ,&nbsp;Asra Aghaei","doi":"10.1016/j.enbuild.2025.115659","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven methods have shown great promise for heating, ventilation, and air conditioning (HVAC) systems’ fault diagnosis, but their reliance on well-labeled datasets poses challenges in real-world applications where such data may not be readily available. Meanwhile, well-labeled data might exist from virtual testbeds or laboratory systems. Domain adaptation could provide a solution to utilize labeled data from a source domain (such as a virtual or laboratory testbed) to diagnose faults in an unlabeled target domain, such as faults in a real building system. This paper utilizes the contrastive adaptation network (CAN) algorithm, originally successful in image classification, to overcome the specific challenges faced by current domain adaptation algorithms in HVAC systems. Furthermore, temporal causal discovery framework (TCDF), a causality-based framework for discovering causal relationships in time series data, is implemented in the data processing step to meet the requirements of convolutional networks, where spatially closer features are more likely to be correlated. The results on air handling unit (AHU) datasets demonstrate that the CAN algorithm effectively facilitates domain adaptation in the absence of target labels and that the feature reordering process reduces the training time and the number of loops required for convergence.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"337 ","pages":"Article 115659"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003895","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven methods have shown great promise for heating, ventilation, and air conditioning (HVAC) systems’ fault diagnosis, but their reliance on well-labeled datasets poses challenges in real-world applications where such data may not be readily available. Meanwhile, well-labeled data might exist from virtual testbeds or laboratory systems. Domain adaptation could provide a solution to utilize labeled data from a source domain (such as a virtual or laboratory testbed) to diagnose faults in an unlabeled target domain, such as faults in a real building system. This paper utilizes the contrastive adaptation network (CAN) algorithm, originally successful in image classification, to overcome the specific challenges faced by current domain adaptation algorithms in HVAC systems. Furthermore, temporal causal discovery framework (TCDF), a causality-based framework for discovering causal relationships in time series data, is implemented in the data processing step to meet the requirements of convolutional networks, where spatially closer features are more likely to be correlated. The results on air handling unit (AHU) datasets demonstrate that the CAN algorithm effectively facilitates domain adaptation in the absence of target labels and that the feature reordering process reduces the training time and the number of loops required for convergence.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信