Encapsulation of ultrasound-assisted flaxseed meal protein hydrolysate in nanoliposomal systems by new formulation: Physicochemical properties, release behavior under simulated gastrointestinal conditions
{"title":"Encapsulation of ultrasound-assisted flaxseed meal protein hydrolysate in nanoliposomal systems by new formulation: Physicochemical properties, release behavior under simulated gastrointestinal conditions","authors":"Faezeh Farzanfar , Alireza Sadeghi Mahoonak , Mohammad Ghorbani , Seyed Hossein Hosseini Ghaboos , Shima Kaveh","doi":"10.1016/j.fochx.2025.102389","DOIUrl":null,"url":null,"abstract":"<div><div>Flaxseed meal is rich in protein with antioxidant properties. In this study, its protein was hydrolyzed using alcalase and pancreatin (1.2 %–3 %) after ultrasonic pretreatment. The pancreatin-treated hydrolysate showed the highest antioxidant activity, with 75.66 % DPPH inhibition, 70.39 % iron ion chelation, and a total antioxidant activity absorption value of 0.86 nm. To enhance antioxidant stability and control release, the hydrolyzed protein was encapsulated in liposomal nanovesicles with varying flaxseed oil (0.01, 0.02 and 0.03 g/10 ml chloroform) and cholesterol (0.02, 0.03, 0.04 and 0.05 g) concentrations. Treatment L3 (0.02 g flaxseed oil) exhibited the best antioxidant and physicochemical properties, with 95.64 % encapsulation efficiency, 409 nm particle size, −15.9 mV zeta potential, 87.51 % DPPH inhibition, 56.60 % iron ion chelation, and 1.339 total antioxidant activity absorption at 695 nm. The results showed that the optimal treatment of this study (L3) can be a suitable alternative to synthetic antioxidants in food formulations.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"27 ","pages":"Article 102389"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525002366","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Flaxseed meal is rich in protein with antioxidant properties. In this study, its protein was hydrolyzed using alcalase and pancreatin (1.2 %–3 %) after ultrasonic pretreatment. The pancreatin-treated hydrolysate showed the highest antioxidant activity, with 75.66 % DPPH inhibition, 70.39 % iron ion chelation, and a total antioxidant activity absorption value of 0.86 nm. To enhance antioxidant stability and control release, the hydrolyzed protein was encapsulated in liposomal nanovesicles with varying flaxseed oil (0.01, 0.02 and 0.03 g/10 ml chloroform) and cholesterol (0.02, 0.03, 0.04 and 0.05 g) concentrations. Treatment L3 (0.02 g flaxseed oil) exhibited the best antioxidant and physicochemical properties, with 95.64 % encapsulation efficiency, 409 nm particle size, −15.9 mV zeta potential, 87.51 % DPPH inhibition, 56.60 % iron ion chelation, and 1.339 total antioxidant activity absorption at 695 nm. The results showed that the optimal treatment of this study (L3) can be a suitable alternative to synthetic antioxidants in food formulations.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.