Full freedom-of-motion actuators as advanced haptic interfaces

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-03-27 DOI:10.1126/science.adt2481
Kyoung-Ho Ha, Jaeyoung Yoo, Shupeng Li, Yuxuan Mao, Shengwei Xu, Hongyuan Qi, Hanbing Wu, Chengye Fan, Hanyin Yuan, Jin-Tae Kim, Matthew T. Flavin, Seonggwang Yoo, Pratyush Shahir, Sangjun Kim, Hak-Young Ahn, Edward Colgate, Yonggang Huang, John A. Rogers
{"title":"Full freedom-of-motion actuators as advanced haptic interfaces","authors":"Kyoung-Ho Ha,&nbsp;Jaeyoung Yoo,&nbsp;Shupeng Li,&nbsp;Yuxuan Mao,&nbsp;Shengwei Xu,&nbsp;Hongyuan Qi,&nbsp;Hanbing Wu,&nbsp;Chengye Fan,&nbsp;Hanyin Yuan,&nbsp;Jin-Tae Kim,&nbsp;Matthew T. Flavin,&nbsp;Seonggwang Yoo,&nbsp;Pratyush Shahir,&nbsp;Sangjun Kim,&nbsp;Hak-Young Ahn,&nbsp;Edward Colgate,&nbsp;Yonggang Huang,&nbsp;John A. Rogers","doi":"10.1126/science.adt2481","DOIUrl":null,"url":null,"abstract":"<div >The sense of touch conveys critical environmental information, facilitating object recognition, manipulation, and social interaction, and can be engineered through haptic actuators that stimulate cutaneous receptors. An unfulfilled challenge lies in haptic interface technologies that can engage all the various mechanoreceptors in a programmable, spatiotemporal fashion across large areas of the body. Here, we introduce a small-scale actuator technology that can impart omnidirectional, superimposable, dynamic forces to the surface of skin, as the basis for stimulating individual classes of mechanoreceptors or selected combinations of them. High-bit haptic information transfer and realistic virtual tactile sensations are possible, as illustrated through human subject perception studies in extended reality applications that include advanced hand navigation, realistic texture reproduction, and sensory substitution for music perception.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6741","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adt2481","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The sense of touch conveys critical environmental information, facilitating object recognition, manipulation, and social interaction, and can be engineered through haptic actuators that stimulate cutaneous receptors. An unfulfilled challenge lies in haptic interface technologies that can engage all the various mechanoreceptors in a programmable, spatiotemporal fashion across large areas of the body. Here, we introduce a small-scale actuator technology that can impart omnidirectional, superimposable, dynamic forces to the surface of skin, as the basis for stimulating individual classes of mechanoreceptors or selected combinations of them. High-bit haptic information transfer and realistic virtual tactile sensations are possible, as illustrated through human subject perception studies in extended reality applications that include advanced hand navigation, realistic texture reproduction, and sensory substitution for music perception.
触觉传递着重要的环境信息,有助于物体识别、操作和社交互动,可以通过触觉致动器刺激皮肤感受器来实现。触觉界面技术是一项尚未完成的挑战,它能以可编程的时空方式在身体的大面积区域内调动各种机械感受器。在此,我们介绍一种小型致动器技术,它能向皮肤表面传递全向、可叠加的动态力,以此为基础刺激单个机械感受器类别或它们的选定组合。高位触觉信息传输和逼真的虚拟触觉感受是可能的,这一点可以通过扩展现实应用中的人体感知研究来说明,这些应用包括先进的手部导航、逼真的纹理再现和音乐感知的感官替代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信