Selective filtering of photonic quantum entanglement via anti–parity-time symmetry

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-03-27 DOI:10.1126/science.adu3777
Mahmoud A. Selim, Max Ehrhardt, Yuqiang Ding, Hediyeh M. Dinani, Qi Zhong, Armando Perez‐Leija, Şahin K. Özdemir, Matthias Heinrich, Alexander Szameit, Demetrios N. Christodoulides, Mercedeh Khajavikhan
{"title":"Selective filtering of photonic quantum entanglement via anti–parity-time symmetry","authors":"Mahmoud A. Selim,&nbsp;Max Ehrhardt,&nbsp;Yuqiang Ding,&nbsp;Hediyeh M. Dinani,&nbsp;Qi Zhong,&nbsp;Armando Perez‐Leija,&nbsp;Şahin K. Özdemir,&nbsp;Matthias Heinrich,&nbsp;Alexander Szameit,&nbsp;Demetrios N. Christodoulides,&nbsp;Mercedeh Khajavikhan","doi":"10.1126/science.adu3777","DOIUrl":null,"url":null,"abstract":"<div >Entanglement is a key resource for quantum computing, sensing, and communication, but it is susceptible to decoherence. To address this, research in quantum optics has explored filtering techniques such as photon ancillas and Rydberg atom blockade to restore entangled states. We introduce an approach to entanglement retrieval that exploits the features of non-Hermitian systems. By designing an anti–parity-time two-state guiding configuration, we demonstrate efficient extraction of entanglement from any input state. This filter is implemented on a lossless waveguide network and achieves near-unity fidelity under single- and two-photon excitation and is scalable to higher photon levels, remaining robust against decoherence during propagation. Our results offer an approach to using non-Hermitian symmetries to address central challenges in quantum technologies.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6741","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adu3777","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Entanglement is a key resource for quantum computing, sensing, and communication, but it is susceptible to decoherence. To address this, research in quantum optics has explored filtering techniques such as photon ancillas and Rydberg atom blockade to restore entangled states. We introduce an approach to entanglement retrieval that exploits the features of non-Hermitian systems. By designing an anti–parity-time two-state guiding configuration, we demonstrate efficient extraction of entanglement from any input state. This filter is implemented on a lossless waveguide network and achieves near-unity fidelity under single- and two-photon excitation and is scalable to higher photon levels, remaining robust against decoherence during propagation. Our results offer an approach to using non-Hermitian symmetries to address central challenges in quantum technologies.
光子量子纠缠的反宇称时间对称选择性滤波
纠缠是量子计算、传感和通信的关键资源,但它容易受到退相干的影响。为解决这一问题,量子光学研究探索了光子辅助和雷德堡原子封锁等过滤技术,以恢复纠缠态。我们介绍了一种利用非赫米提系统特征的纠缠检索方法。通过设计一种反奇偶时双态引导配置,我们展示了从任何输入态中高效提取纠缠的方法。这种滤波器是在无损波导网络上实现的,在单光子和双光子激发下实现了接近统一的保真度,并可扩展到更高的光子水平,在传播过程中对退相干保持稳健。我们的成果提供了一种利用非赫米提对称性解决量子技术核心挑战的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信