Demystifying food flavor: Flavor data interpretation through machine learning

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Huabin Luo, Simen Akkermans, Jan F.M. Van Impe
{"title":"Demystifying food flavor: Flavor data interpretation through machine learning","authors":"Huabin Luo,&nbsp;Simen Akkermans,&nbsp;Jan F.M. Van Impe","doi":"10.1016/j.foodchem.2025.144000","DOIUrl":null,"url":null,"abstract":"<div><div>Flavor data obtained from analytical techniques are vast and complex, which increases the difficulty of multi-factorial analysis. This study aims to provide a machine learning (ML)-based framework to interpret flavor data, exploiting four widely used techniques, i.e., Principal Component Analysis (PCA), Redundancy Analysis (RDA), Partial Least Squares (PLS), and Random Forest (RF). To demonstrate the potential of these ML techniques, two case studies, one with semi-quantitative data and the other with quantitative data, were discussed. Results indicate that PCA is useful for data exploration; RDA can quantify the statistical significance of factors; combining feature importance analysis results from PLS and RF offer a comprehensive understanding of marker compounds. Regarding classification performance, PLS excels in handling collinear data, whereas RF captures complex patterns if sufficient data are available. However, overfitting is a risk for datasets with small sample sizes. Overall, carefully selecting and integrating those ML techniques could demystify food flavor.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"483 ","pages":"Article 144000"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625012518","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Flavor data obtained from analytical techniques are vast and complex, which increases the difficulty of multi-factorial analysis. This study aims to provide a machine learning (ML)-based framework to interpret flavor data, exploiting four widely used techniques, i.e., Principal Component Analysis (PCA), Redundancy Analysis (RDA), Partial Least Squares (PLS), and Random Forest (RF). To demonstrate the potential of these ML techniques, two case studies, one with semi-quantitative data and the other with quantitative data, were discussed. Results indicate that PCA is useful for data exploration; RDA can quantify the statistical significance of factors; combining feature importance analysis results from PLS and RF offer a comprehensive understanding of marker compounds. Regarding classification performance, PLS excels in handling collinear data, whereas RF captures complex patterns if sufficient data are available. However, overfitting is a risk for datasets with small sample sizes. Overall, carefully selecting and integrating those ML techniques could demystify food flavor.

Abstract Image

Abstract Image

揭开食物味道的神秘面纱:通过机器学习来解释味道数据
通过分析技术获得的风味数据庞大而复杂,这增加了多因素分析的难度。本研究旨在提供一个基于机器学习(ML)的框架来解释风味数据,利用四种广泛使用的技术,即主成分分析(PCA),冗余分析(RDA),偏最小二乘(PLS)和随机森林(RF)。为了展示这些机器学习技术的潜力,我们讨论了两个案例研究,一个是半定量数据,另一个是定量数据。结果表明,主成分分析有助于数据挖掘;RDA可以量化各因素的统计显著性;结合PLS和RF的特征重要性分析结果,可以全面了解标记化合物。在分类性能方面,PLS擅长处理共线数据,而RF在数据充足的情况下捕获复杂模式。然而,对于小样本量的数据集,过度拟合是一种风险。总的来说,仔细选择和整合这些ML技术可以揭开食物风味的神秘面纱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信