Dynactin knockdown leads to synuclein aggregation by blocking autophagy in a zebrafish model of Parkinson's disease.

IF 1.9 4区 医学 Q2 BIOLOGY
Yongmei Wu, Qiang Guo, Jinfan Gan, Linghan Duan, Haixia Zhao, Haoran Tai, Chan Yang, Yunzhu Li, Zhen Xu, Yue Yao, Zheng Nie, Ming Yang, Shurong Li, Jun Li, Bingyin Su
{"title":"Dynactin knockdown leads to synuclein aggregation by blocking autophagy in a zebrafish model of Parkinson's disease.","authors":"Yongmei Wu, Qiang Guo, Jinfan Gan, Linghan Duan, Haixia Zhao, Haoran Tai, Chan Yang, Yunzhu Li, Zhen Xu, Yue Yao, Zheng Nie, Ming Yang, Shurong Li, Jun Li, Bingyin Su","doi":"10.1590/1414-431X2025e14282","DOIUrl":null,"url":null,"abstract":"<p><p>Axons of dopaminergic neurons projecting from substantia nigra to striatum are severely affected in the early stage of Parkinson's disease (PD), with axonal degeneration preceding the loss of cell bodies. Our previous study indicated that the dysfunctional retrograde axonal transport could lead to the death of dopaminergic neurons resulting in PD (10.1111/j.1471-4159.2008.05526.x). However, dynein, as the main molecule involved in retrograde axonal transport, was not affected. This study aimed to verify the hypothesis that dynactin rather than dynein may be one of the key factors in the retrograde degeneration of dopaminergic neurons in the early stage of PD. Dynactin morpholino was used to inhibit the expression of dynactin in transgenic (Vmat2:GFP) zebrafish, resulting in a significant decrease of diencephalon dopamine neurons and synuclein aggregation in the basal plate region. In the dopaminergic SH-SY5Y cell line, dynactin-siRNA knockdown resulted in the expression of dynein shifting from dispersed distribution to concentration in synapses and cytoplasm near axons, and the fusion rate of dynein to dynactin was decreased, especially in axons, which blocked the retrograde axonal transport of α-synuclein and autophagy flow. Our results linked the knockdown of dynactin gene to the dysfunction of axonal microtubule transport system, suggesting that dynactin may be one of the key factors contributing to the retrograde degeneration of dopaminergic neurons in the early stage of PD.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"58 ","pages":"e14282"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Medical and Biological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1414-431X2025e14282","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Axons of dopaminergic neurons projecting from substantia nigra to striatum are severely affected in the early stage of Parkinson's disease (PD), with axonal degeneration preceding the loss of cell bodies. Our previous study indicated that the dysfunctional retrograde axonal transport could lead to the death of dopaminergic neurons resulting in PD (10.1111/j.1471-4159.2008.05526.x). However, dynein, as the main molecule involved in retrograde axonal transport, was not affected. This study aimed to verify the hypothesis that dynactin rather than dynein may be one of the key factors in the retrograde degeneration of dopaminergic neurons in the early stage of PD. Dynactin morpholino was used to inhibit the expression of dynactin in transgenic (Vmat2:GFP) zebrafish, resulting in a significant decrease of diencephalon dopamine neurons and synuclein aggregation in the basal plate region. In the dopaminergic SH-SY5Y cell line, dynactin-siRNA knockdown resulted in the expression of dynein shifting from dispersed distribution to concentration in synapses and cytoplasm near axons, and the fusion rate of dynein to dynactin was decreased, especially in axons, which blocked the retrograde axonal transport of α-synuclein and autophagy flow. Our results linked the knockdown of dynactin gene to the dysfunction of axonal microtubule transport system, suggesting that dynactin may be one of the key factors contributing to the retrograde degeneration of dopaminergic neurons in the early stage of PD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
129
审稿时长
2 months
期刊介绍: The Brazilian Journal of Medical and Biological Research, founded by Michel Jamra, is edited and published monthly by the Associação Brasileira de Divulgação Científica (ABDC), a federation of Brazilian scientific societies: - Sociedade Brasileira de Biofísica (SBBf) - Sociedade Brasileira de Farmacologia e Terapêutica Experimental (SBFTE) - Sociedade Brasileira de Fisiologia (SBFis) - Sociedade Brasileira de Imunologia (SBI) - Sociedade Brasileira de Investigação Clínica (SBIC) - Sociedade Brasileira de Neurociências e Comportamento (SBNeC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信